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ABSTRACT
We present a new algorithm for searching video repositories using
free-hand sketches. Our queries express both appearance (color,
shape) and motion attributes, as well as semantic properties (ob-
ject labels) enabling hybrid queries to be specified. Unlike existing
sketch based video retrieval (SBVR) systems that enable hybrid
queries of this form, we do not adopt a model fitting/optimization
approach to match at query-time. Rather, we create an efficiently
searchable index via a novel space-time descriptor that encapsu-
lates all these properties. The real-time performance yielded by our
indexing approach enables interactive refinement of search results
within a relevance feedback (RF) framework; a unique contribution
to SBVR. We evaluate our system over 700 sports footage clips ex-
hibiting a variety of clutter and motion conditions, demonstrating
significant accuracy and speed gains over the state of the art.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Sketch based Retrieval;
I.4 [Image Processing and Computer Vision]: Feature Measure-
ment—Feature representation

General Terms
Computer Vision

Keywords
Sketch based Video Retrieval, Relevance Feedback

1. INTRODUCTION
Efficient and intuitive search tools for large video repositories form
an essential component of the modern production pipeline. Search-
ing through rushes footage, or discovering archival assets for pro-
duction re-use, are common usage scenarios for video assets main-
tained in digital form. Yet existing asset management systems oper-
ate over metadata only, using text-based queries that specify the de-
sired semantic concept (e.g. persons or objects present) in the form
of user-annotated tags logged against each video clip. Semantics
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are both useful and convenient to encode via metadata tags, how-
ever the appearance or motion of content within the video clip itself
is also useful when specifying a desired video asset. Unfortunately
the appearance and motion of objects cannot be expressively con-
veyed via a few metadata tags and consequently is rarely indexed
within existing video search tools.

On the other hand, pictorial queries such as free-hand sketches of-
fer an intuitive mechanism for expressing appearance and motion
information. Sketch based retrieval (SBR) techniques have been
applied to large-scale image search [13, 6, 15, 14, 18] (SBIR) and
to the search of video collections (SBVR) [7, 9, 16] using sketched
color and motion indicators. Since sketch ambiguity and limited
user depictive skill are common problems with SBVR systems,
combined or ‘hybrid’ SBVR systems have been developed that fuse
semantics and appearance. Such systems accept sketches annotated
with semantic object labels [19], to both disambiguate queries and
enhance their expressive power.

This paper presents a novel SBVR system of this ‘hybrid’ variety,
comprising two core technical contributions:

1. Spatio-temporal Indexing. Existing hybrid SBVR uses op-
timization approaches that fit the sketch as a model to each
video clip in the database. This per-record optimization is
slow (in the order of seconds per record) and scales linearly,
at best, with database size. By contrast, our system extracts a
digital fingerprint (feature vector) from each video clip rep-
resenting its content, enabling query comparisons several or-
ders of magnitude faster with the potential to scale sub-linearly.

2. Relevance Feedback. Users may iteratively work with our
system to refine the returned results by flagging a few ‘good’
(relevant) or ‘poor’ (irrelevant) matches. This is essential
given the ambiguity inherent in sketch (e. g. shape) when
faced with a large database, and given the multiple-modalities
(e. g. colour, motion, shape, semantics) present within a hy-
brid sketched query. Although common in the wider infor-
mation retrieval literature, and fleetingly explored for SBIR
[22, 12], relevance feedback has not been seen in any SBVR
system before.

Relevance feedback is enabled through the interactive performance
obtained via our novel video descriptor for index-based hybrid
SBVR. Existing hybrid SBVR approaches treat retrieval as an opti-
mization process in which a model derived from the sketch is fitted
to evidence in each video clip in turn [9, 19, 17]. The posterior
likelihood of the fit drives the position of each video in the ranked



results. Whilst such approaches are robust, query time is in the
order of minutes for a search over hundreds of videos. General
purpose visual search algorithms more commonly build a search
index; compact and efficiently searchable ‘fingerprints’ distilled
from each media item that can be represented and compared in a
high-dimensional feature-space. Despite their power and ubiquity,
indexing approaches have not been explored for hybrid (i. e. ap-
pearance + semantic based) SBVR.

Our index is formed using a novel spatio-temporal descriptor that
represents the local shape, color, semantic class and motion param-
eters of objects within quantized space-time chunks of the video
sequence. Additionally, we demonstrate greater flexibility through
our ability to incorporate background appearance constraints within
our search query. Previous hybrid SBVR systems have enabled
search only on the foreground (moving) objects within the scene
and so have ignored spatial structure in the background.

We have evaluated our proposed system over a database of 700
sports footage video clips containing 12 categories of subjects of
differing appearance moving under various motion conditions (an
expanded version of the dataset by Hu et al. [17]). We release this
dataset alongside our results and ground-truth as a further contribu-
tion 1. We demonstrate that our new hybrid SBVR technique using
an indexing approach, when used alone, delivers comparable ac-
curacy to the state of the art (optimization approaches of Hu et al.
[17, 19]) but at a fraction of the computational cost. When com-
bined with relevance feedback, our indexing approach comfortably
exceeds the current state of the art both in terms of accuracy and
speed.

2. RELATED WORK
Sketch based Retrieval (SBR) dates back to the mid-nineties, which
yielded sketch based image retrieval (SBIR) techniques based on
spatial distributions of shape, color, or texture [2]. Spectral rep-
resentations for SBIR were later explored by Jacobs et al. [20]
using wavelets to match ’finger painted’ color blob depictions of
query images. VisualSEEk explored graph representations of re-
gion topology to improve on earlier blob based systems.

Alternatives to the blob based SBIR approaches using monochrome
contour or line based techniques gained traction via elastic match-
ing [3] and scale space descriptor [23] approaches. Echoing the
early hybrid SBVR systems of today, these early SBIR approaches
relied on optimization processes that matched a sketch-derived model
to each image — an expensive strategy that scales at best linearly
with database size. Global image descriptors such as Edge His-
togram Descriptor or Tensor Structure [13] allowed for improved
retrieval times using efficient indexing, rather than model fitting
matching strategies. Following the success of feature space quan-
tization and the Bag of Visual Words (BoVW) paradigm for large
scale image search, SBIR became scalable to large scale databases
through the work of Hu et al. [15] and Eitz et al. [14] who pro-
posed new descriptors adapting the BoVW for SBIR. Cao et al.
later addressed SBIR scalability through inverse (assocative) index
structures such as the Edgel Index. Sun et al. [30] achieved in-
dexing of billions of images by optimizing this indexing structure
using feature quantization and hashing strategies. In contrast to
SBIR, SBVR has been explored sparsely. Initial systems such as
Chang et al’s VideoQ [8] echoed early SBIR work through the rep-
resentation of objects as colored blobs, additionally incorporating

1Dataset available at http://cvssp.org/projects/sketch/cvmp14/

indicators of object motion within the sketch. Collomosse et al. [9]
over-segmented video super-pixels via a Linear Dynamical System
(LDS) framework overcoming the requirement of an ‘ideal video
segmentation’ assumed by VideoQ’s video ingestion pre-process.
Hu et al. [16] matched clustered SIFT correspondence tracklets
although suffered in accuracy by disregarding shape and other ap-
pearance information such as color. We note that all these prior
SBVR systems eschew the creation of efficient indexes for a model
fitting approach in order to achieve usable accuracy.

The integration of semantics and appearance within SBIR (so called
‘hybrid SBIR’) has become an increasing trend, and has enabled
SBIR to scale to billions of images. Approaches such as [5, 31], uti-
lize semantics to find relevant images via tags providing represen-
tative imagery to remove ambiguity in the sketch matching process.
Hybrid SBVR has also been explored by Hu et al. [19], extending
their earlier trajectory retrieval system [16] to allow for semantic la-
bel annotation in the query sketch. Markov Random Fields (MRF)
[17] were adapted for SBVR echoing the optimization approach
of Collomosse et al. [9] for SBIR, but labelling space-time sub-
volumes rather than per-frame superpixels. This greatly improved
the performance of retrieval, yet Hu et al. MRF approach still suf-
fers from high computational expense requiring minutes to execute
search queries over only a few hundred videos.

Relevance feedback (RF) is a popular technique for trying to bridge
the semantic gap, improving retrieval results by inviting the user
to identify relevant and/or irrelevant results that can then be used
to refine subsequent retrieval iterations. The first RF techniques
were presented for text retrieval by Salton et al. [25], and were
adapted to Image retrieval by Su et al. [29]. Common approaches
apply a linear SVM to rerank results [26] more recent approaches
are applied over multiple features using multiple classifiers[32] or
kernels [33]. Within SBR, image based RF techniques have been
demonstrated [22, 12] yet, despite the well-known advantages of
RF when dealing with complex multi-model datasets, RF has not
yet been explored for SBVR.

3. SKETCH BASED VIDEO RETRIEVAL
Our system accepts a keyword annotated free-hand sketch Q as
a query, and searches a database of video clips D = {V1, ...,VD} to
find a match in real-time. Sketches are assumed to coarsely approx-
imate object shape and color, the latter using the standard Macin-
tosh 16 hue palette. Each sketched object is annotated with both a
keyword describing its semantic category, and an arrow indicating
motion trajectory, examples of this can be seen in Fig. 7. Shapes in
the background of the scene may also be depicted using color and
semantics.

3.1 Video Ingestion
Each video Vi ingested into the database is subject to a series of
pre-processing steps. Each frame Vi(t) is first over-segmented us-
ing mean-shift [11] into sets Si(t) = {St

1, ...,S
t
m} of super-pixels;

typically m' 200 with minimum area |St
i |= 20 pixels. Histograms

describing color C(St
i) ∈ℜ16 and semantic attributes Q(St

i) ∈ℜ12

are extracted for each super-pixel (Sub-sec. 3.1.1). A set of moving
feature points P = {Pt

1, ...,P
t
n} corresponding to foreground objects

are also identified within each frame, in a camera motion compen-
sated space (Sub-sec. 3.1.2). These set of super-pixels and fea-
ture points are subsequently combined (with information from the
background) to form our spatio-temporal descriptor for matching
(Sub-sec. 3.2).

http://cvssp.org/projects/sketch/cvmp14/


Figure 1: Videos and Queries are represented through space time volume by translating points into a panorama space. The volume is
quantized into bins, with each bin having a semantic descriptor averaged over the total semantic distribution, and a color histogram from
points within the cell. BoVW GF-HOG descriptor is generated over the panorama to represent the background structure. Results are provided
back to the user for annotation of feedback. Linear classifiers are trained based on this feedback and combined to rerank the results.

3.1.1 Attribute Extraction
We extract semantic attributes from video by labeling pixels in each
frame independently using Semantic Texton Forests (STF) [27].
Although more accurate and spatially coherent approaches exist
[28, 21] their reliance upon complex filter banks and assignments at
test time are prohibitive for scaling over a large video dataset. STF
uses a Forest of Extremely Randomized Trees to classify pixels,
these ensembles of decision trees are fast to train and test whilst
their inherent randomness allows for flexibility to inter-class dis-
crepancies.

The STF approach is composed of three classifiers: a standard en-
semble of randomized decision trees; a global image classifier; and
a second ensemble based on region information. The standard en-
semble of trees are trained based on CIELab color value differ-
ences. A random point px2,y2,b2 around a training point px1,y1,b1

within a window (width = 50) is selected, where x,y refer to lo-
cation and b refers to color channel. The comparisons of values
are based on a random comparison function value px1,y1,b1 addition
px1,y1,b1 + px2,y2,b2 , subtraction px1,y1,b1− px2,y2,b2 and absolute dif-
ference

∣∣px1,y1,b1 − px2,y2,b2

∣∣, as in [27]. We also utilize medianp∈X

medianp∈y as well as relative xy positions to centre
px1 ,y1−cx,y

px2 ,y2−cx,y
where

cx,y is the coordinates of the center of the image. In experiments
these additions are beneficial due to salient objects commonly be-
ing in the center of shot.

The global image classification is computed using an approach sim-
ilar to Bag of Visual Words(BoVW). A hierarchal comparison of
leaf distribution of the decision trees forms a Pyramid Matching
Kernel for use within a OneVsOthers SVM strategy. The third
classifier, a second ensemble of decision trees trained on the re-
sultant soft classified image. The probability image is subsampled
and integral images are calculated allowing for a superpixel repre-
sentation, a second ensemble is trained using rectangle feature is
used based on window summation.

Each individual pixel is thus attributed a 12-D vector of probabil-
ities describing the semantic content it depicts; this vector is aver-
aged for all pixels within each superpixel St

i to yield Q(St
i) ∈ℜ12.

This is in contrast the more common approach of conditional ran-
dom fields[28], we opt for this approach for performance.

We extract color attributes by calculating a color histogram from
pixels within each super-pixel St

i . A histogram representation re-
quires quantization of the color space into bins, for which we use
the 16 color palette of the query sketch interface to enable rapid
comparison at query-time. As this palette differs from the dominant
colors present within each video, a remapping is performed. Given
a video we collate pixels from several frames sampled at equal tem-
poral intervals, and quantize CIELab space to identify the set of
dominant video colors V = {v1, ...,vq}. Given a super-pixel region
St

i , we produce a normalized histogram Hv( j), j = [1,q] by count-
ing pixels within the region and quantizing using the video palette.
The color descriptor C(St

i ) = Hq(i), i = [1,16] for the super-pixel
(where Hq is defined using the query palette) is given by:

Hq(i) =
1
|V |

|V |

∑
j=1

Hv( j)d (hc[i],hv[ j]) . (1)

where d(.) is the normalized CIELab distance between colors cor-
responding to the ith and jth bins of Hq and Hv.

3.1.2 Moving Feature Detection
SBVR queries depicting motion often do so relative to the back-
ground [10]. We must therefore compensate for background mo-
tion and do so by computing inter-frame homographies (after [7,
9]) to register the location of St

i within a single static reference
frame. The bounding boxed surrounding all S in this space is used
to scale the frame (preserving aspect ratio) to a constant width. This
scaled, bounded region is in turn mapped to the rectangular region
of the query canvas by a further scaling in order to transform points
in the sketched query to points in the camera-compensated video
space.



We extract a set of 2D feature points from the centroids of the
superpixels S , mapping the location of these into the camera-
compensated space. We assume only moving objects to be of inter-
est, and create a mask of moving regions using a thresholded op-
tical flow field [4] (computed in the camera-compensated space).
Feature points falling within the mask are stored for each frame
resulting in P{} = {Pt

1, ...,P
t
n}.

3.1.3 Capturing Background Detail
We compute a single set of semantic and color attributes for the
background region, i.e. all super-pixels within the camera-compensated
space that do not fall entirely under the flow-derived motion mask
of Sub-sec. 3.1.2. Referring to the union of such super-pixels as
Bt we average the semantic and color distribution of all member
super-pixels to obtain C(Bt) and Q(Bt).

Although background information can be depicted through blobs
contributing to the total distributions, this is a cumbersome method
and doesn’t define query topology. We opt for an additional rep-
resentation, taking the shape descriptor of Hu et al. [18] over the
video panorama. Utilizing such an approach allows for dominant
lines, such as horizon or mountain to be depicted in a consistent
style.

We build a Bag of Visual Words over the dataset. Canny edge
points guide the construction of a poisson gradient field. The area
around these points is then described through Multi-Scale Histogram
of Gradients. Following Hu et al. findings we build a vocabulary
of 1500 words, video clip descriptors are then hard assigned to the
vocabulary. The frequency histogram is normalised according to
TF-IDF and we write the resultant histogram as A(Bt). To avoid
encoding the layout of the panorama, we remove points that fall
within 10 pixels of the boundary. Additionally for computational
efficiency panoramas are resized to a fixed with of 500 while main-
taining the aspect ratio, this makes it possible to compute the back-
ground in an efficient time.

3.2 Spatio-temporal Video Descriptor
In order to index a video we compute a descriptor from its spatio-
temporal (x,y,t) volume. The volume is subdivided equally into
cells; we empirically find a coarse quantization level of 6× 6× 6
divisions for each dimension respectively to yield the best results.
Each video V results in five histograms representing independent
facets, foreground semantics, background semantics, foreground
color, background color and background structure. Foreground
facet histograms are formulated using knowledge of S, P , C(.),
and Q(.) from pre-processing. Feature vectors computed indepen-
dently for each cell are concatenated together, and an additional
feature vector representing the video background is also appended.

3.2.1 Cell descriptor
To compute the feature vector for a given cell, we first identify the
subset of feature points P = {Pt

i } falling within its spatio-temporal
bounds p⊆ P and the associated super-pixels that these points be-
long to s(p) ⊆ S. We then compute a normalized color histogram
from those superpixels:

Hc =
1
|p|∑p

C(s(p)). (2)

A distribution of semantic attributes present in p is similarly com-
puted but not normalized; in the case of color we are interested in
the relative color distribution over all points present, whereas with

semantic attributes we are interested in the total evidence for each
semantic category trained.

Qp = ∑
p

Q(s(p)). (3)

Cell descriptors are then concatenated.

3.2.2 Background descriptor
The feature vector for the background is a concatenation of distri-
butions S(Bt), Q(Bt), and A(Bt).

3.3 Construction of Query Descriptor
We employ a sketch parsing step similar to [10] to extract indi-
vidual object shapes from the sketch; full details are outside the
contribution of this paper. The method results in a set of regions
corresponding to the background and each foreground object, with
2D trajectories across the canvas associated with the latter. Each
segmented region has a color distribution and may also have se-
mantic label associated with it by the user.

We construct a spatio-temporal descriptor from the query sketch,
to enable direct comparison with the spatio-temporal descriptor of
each video in the database, as follows.

We first synthesize a set of super-pixels S and feature points P from
the sketched regions corresponding to foreground objects. We as-
sume that a sketched object progresses linearly along its sketched
trajectory, for the duration of the video, with the sketched position
being the start position. This yields an idealized position for the
object at any relative time in the video. When synthesizing the po-
sition of the object, we use the coordinate mapping established be-
tween the sketch canvas and (constant width) camera-compensated
video space to determine the region occupied by the object at each
frame.

On this basis we synthesize a spatio-temporal representation of an
‘ideal’ video clip, generating S,P progressively at each time in-
stant in the ’ideal’ clip. We cannot know the duration of this ideal
clip, however this does not matter and can be arbitrary as we sub-
sequently compute a descriptor (6×6×6) spatio-temporal quanti-
zation over the ideal clip duration — extracting a spatio-temporal
descriptor as per (Sec. 3.2). Background properties are extracted
from colors, labels and shapes on the sketched background as per
Sub-sec. 3.1.3

3.4 Matching
Given the common representation of the query and video spatio-
temporal descriptors, matching can be achieved trivially via Eu-
clidean distance for each video descriptor in the database. Indepen-
dently computing distances between the semantic and color com-
ponents (using the Euclidean and χ2 distances respectively) yields
a performance gain of ∼ 10%. To retain the efficiency of comput-
ing a single norm between query and video descriptors, we borrow
Arandjelovic and Zisserman’s [1] trick of square-rooting each bin
value (here, the color histogram bins) to convert Euclidean distance
within the color sub-space to the Hellinger distance.

Sub-spaces of the descriptor could be rescaled (re-weighted) to re-
flect user preference Uw for one modality (e.g. semantics) over
another (e.g. color); however equal weighting has been used in all
results presented here.



3.5 Relevance Feedback
The significant performance benefits of our index-based matching
approach for SBVR enable near-instantaneous full database search
over hundreds of videos (Sec. 4). This raises the opportunity of
working with the user ‘in the loop’ to interactively refine results.
After candidate results are presented via our initial matching pro-
cess (Sec. 3.4), the user is invited to label results indicating a
few positive (relevant) or negative (irrelevant) examples. Results
are then re-ranked using this input; a process referred to as Rele-
vance Feedback (RF). In classical information retrieval RF is im-
plemented by training an SVM within the descriptor space, using
the relevant and irrelevant results labelled by the user. However un-
like classical contexts, our hybrid sketches exhibit multiple modali-
ties (or ‘facets’; namely color, shape, motion, semantics, and back-
ground structure). We therefore implemented RF via an ensemble
of classifiers, one per facet.

Each facet’s classifier is trained within the sub-space of our spatio-
temporal descriptor relevant to the facet; e. g. the color components
of our descriptor form a sub-space in which the classifier for the
color facet is trained. Each facet’s classifier takes the form of a
linear SVM (Mi) trained using the marked up relevant and irrel-
evant results. A confidence weight Ci is assigned to each facet’s
SVM, estimating the discriminative power of that facet for the cur-
rent query. For each facet samples specified as positive or negative
become the training set X with their respective labels Y,∈ [−1,1].
The trained SVM Mi, then yields weight Ci as:

Ci =
1
n

j=1

∑
j=n

{
1 if sgn(N(Mi(X j))) = Y j

0 otherwise.
(4)

Where N (.) normalises the kernel score using a sigmoid function:

N(Mi(X j)) =
1

1+exp(A f+B) . (5)

where A and B are optimized by a sigmoid fitting function using the
method of Platt [24].

The position of a video in the re-ranked results is simply the product
of each facet’s SVM decision function N(Mi) and the confidences
in that facet being discriminatory (useful) for the query in hand,
determined automatically Ci and via the user defined weighting Uwi

of Sec. 3.4.

On each iteration of relevance feedback, the user-supplied relevant
and irrelevant examples augment the training set and M are re-
trained. During evaluation we found that presentation of only 10-15
results to be necessary to achieve significant improvement within a
couple of iterations of relevance feedback (Sec. 4.3).

4. RESULTS AND DISCUSSION
We evaluate our over a dataset of 700 TV broadcast sports video
clips, extending the datasets used by [9, 17]. Clip duration is 4-10s
at 25fps with a mixture of low resolution PAL (720x576) and HD
(1920x1080) footage. A ground-truth is manually defined noting
the direction, semantic class and color of moving objects present.
In our experiments we use twelve semantic classes {person, horse,
car, grass, snow, road, sky, trees, stands, obstacle, water, sand}.

Retrieval time using our system is 3 orders of magnitude lower than
prior hybrid SBVR techniques taking on average 150ms to linearly
search the entire dataset.

Method Proposed [9] [16] [17]
Speed Per Clip (s) 0.0003 0.24 0.02-0.03 0.10684
Dataset Speed (s) 0.15 120 17.5 74

In contrast Hu et al. [15] took 20-30ms per clip approximately 17
seconds for our dataset, Hu et al. [17] took well over 1 minute
for our dataset. Additionally our technique and attributes of our
descriptor scales sub-linearly via the use of a kd−tree (disabled
here for fairness of comparison).

4.1 Query Matching
Accuracy of our system is illustrated in Fig. 4, containing Average
Precision-Recall (P-R) curves for 12 query sketches encompassing
7 different object colors and 8 object trajectories. A mean aver-
age precision (MAP) of 35% is achieved using matching seman-
tics, shape and motion cues alone – falling to 32% when color is
also incorporated. A similar small drop in performance is reported
in other hybrid SBVR systems [17] due to the increased difficulty
in accurately matching across all query modalities.

Fig. 8 illustrates representative queries of foreground objects. We
observe that motion alone queries are easier to match. The car class
is most challenging, this is due to the difficulty in semantic segmen-
tation. Since the approach used for semantic segmentation (STF
See Sec. 3.1.1) is based color, sports cars of which are often made
up of a mixture of colors with little consistency between clips so
challenging this method of segmentation. However opting for this
algorithm enables us to segment frames in just under 1 second per
frame, as opposed to TextonBoost [28] taking 7 seconds; this on
the scale of our dataset constitutes a saving of over one week of
time on video ingestion and is in line with existing Hybrid SBVR
approaches [16, 17].

For comparison we adapt our ground-truth to the more permissive
methodology of Hu et al. [17] (matching only 4 major directions)
and compare using their dataset using 7 queries similar to those in
their paper. We achieve MAP of 30% versus their 48%. Although
accuracy is lower, our approach is 3 orders of magnitude faster and
can scale sub-linearly whereas [17] scales linearly and comprises
an expensive matching function is already intractable for interactive
retrieval taking over a minute for our dataset.

4.2 Background
Structural information is a novel facet not explored by previous
Hybrid SBVR [19, 17]. We demonstrate the results of an exemplar
query that takes a simple background structural element into ac-
count. To visualize where the structure has come from we visualise
the video panorama and overlay a plausible matching. We show
these results in Fig. 3.

4.3 Relevance Feedback
For relevance feedback we take the 12 queries as outlined in Sec

4.1 and pass them into our system as normal. Taking the top 15 re-
sults of each query, they are then judged for relevance according to
the ground truth. The relevance of resultant videos is fed back into
the system for relevance feedback as in Sec. 3.5; this constitutes
one iteration. Further iterations are based on the updated results,
optimizing the ranking to the user request. Fig. 5 demonstrates the
significant performance benefits achievable with just one iteration
of RF. A gradual improvement from 32% to 50% MAP is observed
over 4 iterations of feedback. Generally a satisfactory result, com-



Figure 2: Five representative hybrid SBVR queries and top 5 results: (a)-(c) specify semantics and motion, (d)-(f) specify semantics, colour
(shown as keyword for clarity) and motion. Shape is specified implicitly by sketch in both. Objects correctly identified are highlighted with
green bounding box, red for incorrect results.

fortably exceeding the state of the art, can be obtained in just a
couple of RF iterations.

Original Iter. 1 Iter. 2 Iter. 3 Iter. 4
All Modalities 32.1 42.3 45.5 49.3 49.7
Without Color 35.0 33.5 42.9 50.8 54.4

For clarity we demonstrate the improvement over the top 10 re-
sults for the 4 iterations over a couple of queries in Fig. 6b. We
demonstrate over two of the more challenging queries, including a
car query that was earlier highlighted from 8 as difficult, demon-
strating that it is possible to overcome the challenges of a incorrect
semantic segmentation during pre-processing, recovering 4 in 10
correct results from an original 1 in 10 in this difficult case.

Original Iter. 1 Iter. 2 Iter. 3 Iter. 4
Hu [17] 48 * * * *

Proposed 30.6 38.0 46.4 50.7 52.8

As in Sec 4.1 for comparison we apply the ground truth of Hu
et al. [17]. Applying our relevance feedback approach achieving
an improvement of 5%, achieving 53% in contrast to 30%. For
each iteration we achieve 30.6, 38.0, 46.4, 50.7, 52.8 for iterations
1,2,3,4 respectively. Demonstrating that 3 iterations are required to
overcome the challenges of distilling a set of descriptors in contrast
to model optimization, although a satisfactory top 10 result return
can be achieved in fewer iterations.

An iteration of relevance feedback takes approximately 0.2 sec-
onds, this includes the time to train and classify the datasets. This
performance is comparable to the original query performance.

Figure 3: Top: Query incorporating background, and top 5 results;
top 2 are relevant. Bottom: Video panorama depicting correctly
retrieved object motion from best 2 results.

5. CONCLUSION
We have presented the first index-based hybrid SBVR system and
utilized the interactive performance gains to introduce user guided
relevance feedback (RF) to SBVR for the first time. Our system
was driven by multi-modal free-hand sketches depicting various
object facets such as appearance (color, shape), motion, background
detail and the annotated keywords to indicate semantics. This is
achieved using a set of novel spatio-temporal video descriptors.
Prior hybrid SBVR builds a model from the sketched query, fitting
this to each video via expensive optimization. Our initial indexing
approach is 3 orders of magnitude faster using a linear search, with
only minor loss of accuracy versus the state of the art optimiza-
tion based approach [17]. However the scalability and performance
(speed) gains of the indexing approach enabled RF through which
we can improve upon the state-of-the-art accuracy by ∼ 5%. With
each iteration of RF our results demonstrate we are able to greatly
improve on the original results returned to the user.

Future work could consider variation on the components used, a
particular challenge is the semantic segmentation process during
video ingestion. However the use of RF to some degree mitigates
error in these early decisions, and in the query itself, as the user can
subsequently clarify their requirements. Due to the limited number
of results we opted for a simple linear SVM for our ensemble RF
approach. This might be extendable to an incrementally trainable
SVM or a different approach for modelling the separation of rel-
evant / not relevant feedback. We believe this machine learning
question forms the most promising future direction for our work,
though is not necessary to show the value of both our indexing ap-
proach and RF strategy to SBVR for video asset search.
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