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Abstract—We present a novel algorithm for the semantic
labeling of photographs shared via social media. Such imagery
is diverse, exhibiting high intra-class variation that demands
large training data volumes to learn representative classifiers.
Unfortunately image annotation at scale is noisy resulting in errors
in the training corpus that confound classifier accuracy. We show
how evolutionary algorithms may be applied to select a ’purified’
subset of the training corpus to optimize classifier performance.
We demonstrate our approach over a variety of image descriptors
(including deeply learned features) and support vector machines.

I. INTRODUCTION

Billions of social media posts are shared world-wide each
day, and much of this data is visual. Automated labeling (clas-
sification) of this unstructured, diverse visual data into high-
level semantic concepts presents significant challenges beyond
those posed by modern lab based datasets e.g. ImageNet [10].
In particular, the high intra-class variability of social media
captured ‘in the wild’ requires a step-change in the volume of
training data required to learn representative image classifiers.
The issue is compounded by modern deep learning approaches,
that whilst delivering significant improvements in annotation
performance, are relatively data hungry. Unfortunately anno-
tated social media for training is expensive to acquire at scale.
This has motivated strategies such as crowd-sourced markup
(e.g. gamified annotation) or the combination of auxiliary
data with domain adaptation (e.g. incorporating results of a
Google of FlickR image search) to bolster the training corpus.
However both strategies result in noisy annotation in training
that degrades performance of learned classifiers.

This paper presents a novel technique for filtering (or
‘purifying’) noisy annotated training data for the purpose of
training supervised image classifiers. By selecting the best
subset of available data for training, we show that significant
performance gains can be achieved for social media image
classification using contemporary deep-learning approaches.
Whilst sparsification of data for supervised classification is
not new to machine learning, our evolutionary strategy for
exploring the combinatorial space of data selection is, to the
best of our knowledge, novel and forms the main contribution
of this paper. Specifically, we apply a Genetic Algorithm (GA)
to iteratively optimize a binary vector describing the selection
of training data, encouraging labeling consensus within the pos-
itive training examples for several high-level semantic concept
groups. Our work uses deeply learned feature sets obtained
from the fully connected layers of a convolutional neural net-

work (CNN) with the decision layer provided by support vector
machine (SVM) classifiers. We also evaluate over a variety
of other contemporary features and SVM configurations to
showcase the general applicability of our approach. Ultimately
our evolutionary approach increases the practicality of semantic
classification for high intra-class varying data, allowing for ‘in
the wild’ social media labeling.

A. Related Work
Early image annotation work focused upon the extraction of

specific binary scene semantics e.g. indoor/outdoor [28]. Gen-
eralization to multiple semantic classes was initially performed
by jointly modeling the space of semantic labels and visual fea-
tures. By introducing a set of latent variables to encode hidden
states between labels and image descriptors, semantic labels
can be inferred in an unsupervised manner [1], [12], [18], [25].
Extensions of such approaches to socially contributed image
data (e.g. FlickR) have been explored through propagation of
labels across an attribute graph [3], [23], [29] benefiting from
contextual information e.g. derived from metadata tags. Most
social media image classification has focused on use of FlickR
data, benefiting from loose user-tagging of imagery offering
valuable prior context. Little has been done to explicitly classify
social media from untagged sources e.g. Facebook.

Supervised image classification has benefited extensively
from gradient domain image descriptors (e.g. HOG, SIFT)
and the past decade has seen various feature space encoding
strategies, from basic vector quantization [8] to VLAD [15]
and Fisher Vector encodings [27]. Significant performance
advantages for semantic labeling have been obtained by com-
bining these representations with machine learning classifiers
particularly support vector machines (SVMs) [4], [5], [9].
Higher level concepts, such as image aesthetics [22], have been
explored using similar pipelines trained using ratings sourced
from FlickR. Marchesotti et al. expanded this early work to
incorporate textual bi-grams from user comments combined
with visual features, learning ‘beautiful’ and ‘ugly’ image
attributes [21].

A common problem with the above methods is scalability
to large numbers of concepts, and large-scale categorization
techniques have been developed by Wang et al. [32], [33]
and [31]. These partly leverage auxiliary search engines to
retrieve related images from web-scale image sets, utilizing
text word search to obtain a ranked list of candidate tags.
Malisiewicz et al. [20] showed that training ensembles of
classifiers (e.g. one per training data item) could yield further



Fig. 1: Corpus of social media harvested from participant Facebook profiles, labeled to high-level semantic concepts identified
through anthropological study. Figure showing representative examples of each concept and demonstrating a high degree of
intra-class variability in both appearance and content.

performance benefits, though such ’exemplar SVM’ approaches
scale linearly with training corpus size making them impractical
for datasets exhibiting high intra-class variation e.g. social
media [35]. Juneja et al. [16] later explored localization of
semantics concepts within images, utilizing exemplars SVM
to improve performance. Most recently a shift toward deeply
learned neural networks (e.g. CNNs) that simultaneously learn
both the descriptors and classification stages of the pipeline
have gained popularity due to the step-change in performance
reported on standard image classification and object recognition
benchmarks [17]. The power of deep learning frameworks
typically lies within the learned features (e.g. within the
fully-connected layers of a CNN) which may be decoupled
post-training and fed into alternative classifiers. For example,
utilizing a spatially localized CNN, Dixit et al. [11] built
semantic Fisher vector representation combining the feature
representation trained in a CNN and used SVM to classify
images with context.

Our work also makes use of CNN derived features with
an SVM classification back-end, but we apply evolutionary
algorithms to identify an optimal subset of the noisy training
data available to us. Although evolutionary algorithms have
been used for feature space re-weighting and transfer learning
in supervised classification [26], our work contrasts in the
use of evolutionary optimization for training data selection;
essential when dealing with high volume, noisily annotated
datasets such as social media.

II. SOCIAL MEDIA CLASSIFICATION

Image classification commonly focuses on recognition e.g.
of dominant physical objects within images, and significant
advances have been made due to the availability of large an-
notated datasets. However practical scenarios seeking to ‘make
sense’ of social media imagery do not focus on object detection
but rather the classification of imagery into fewer, higher level
semantic groups [7] e.g. sports, family, friends, beliefs. Such
imagery tends to depict mixtures of concepts within cluttered
scenes and so annotation carries greater uncertainty. Tradition-
ally to overcome intra-class ambiguity, approaches rely upon
extensive user annotation drawing a labeling consensus from

multiple annotators of the same image, so requiring extensive
manual effort [34]. Alternatively machine learning algorithms
can bootstrap a consensus across a large data corpus. Uncer-
tainty within the annotated corpus is further compounded by the
poor quality of such casually captured images. Data purification
can overcome both issues through selection an optimal subset
of training data simultaneously reflecting both the reliability of
the label and the quality of the visual representation.

A. Dataset and Augmentation
In this work we study the challenging problem of Facebook

image annotation. We select this platform due to the abun-
dance of unlabeled social imagery, distinct from well-studied
platforms such as FlickR for which images are associated with
carefully curated keyword tags. By contrast we use purely
visual data.

Twenty college-aged participants were recruited from the
same geographic region, and consented to the harvesting of
all photographic content within their private Facebook profiles.
Building upon an anthropological study of this age group
[7], a set of nine high-level semantic concept groups were
identified reflecting common themes within posts, namely: Art,
Attitude & Beliefs, Family & Pets, Food, Friends, Travel,
Celebrations; Personal style and self-imagery (e. g. selfie) and
Sports. Under controlled conditions we invited participants to
manually annotate each other’s photographs with these nine
concept group labels over a total of 5k images. Note that
multiple concepts may be annotated as present within an image
(Fig.1).

Given the high within-class diversity of the dataset, the cor-
pus is boosted using weakly labeled auxiliary content harvested
from Google Image Search. An image trawler was implemented
to identify additional images based on the above keyword
concepts. Since only the top few results for a given keyword
are typically relevant, we exploit the WordNet taxonomy [24],
applying the ’Is-A’ relationship to construct a syn-set of re-
lated keywords. We harvest an additional 23k images evenly
distributed across the nine concept groups using this method.
These weakly labeled images are not pre-filtered in any way,
yet the use of additional noisy annotated data is beneficial when



training when applying our data purification approach (Subsec.
II-C).

B. Visual Representation
The representation of visual data for supervised classifica-

tion has transformed in recent years. Here we explore four
different approaches to representing visual information across
two methodologies; Shallow and Deep. Shallow representations
are derived from prescriptive, hand crafted gradient-domain
features, commonly applying the feature-space quantization
strategies (e.g. Bag of Visual Words) to encode interest point
descriptors. We explore SIFT [19] and PHOW-Colour [2]
feature descriptors allowing us to demonstrate the benefit of
additionally encoding colour information in the latter. In our
work we use the defacto standard hard-assignment Bag of
Visual Words (BoVW) pipeline [8] constructing a dictionary
via K-Means (where K is the codebook size), and assigning
descriptors to bins on a nearest-neighbor basis to form a
frequency histogram describing the image. A recent trend in
image classification is the resurgence of deep representations,
a popular choice being the Convolutional Neural Network
(CNN) [17] in which convolutional filter banks are optimized
to learn an feature representation directly from training data.
CNNs requires large training corpora to generalize well, and
we explore CNNs trained both on ImageNet and on ImageNet
and our 28k image corpus. Below we explain parameters and
settings used within our experiments:
• Method 1: CNN Features – are extracted from the Fully

Connected layers of the Neural Network, it has been
shown [30] that using a SVM can improve performance
vs using the end-layers of the Neural Network classi-
fier. Therefore we extract descriptors from the ImageNet
trained model, using the FP7 layer as in [6].

• Method 2: Optimized CNN Features – Training a CNN
requires large data corpora, which ImageNet provides. It
has been shown that fine tuning the model over the target
domain can improve performance, e.g. [6] demonstrated
that 3% improvement can be achieved through such a
process on the VOC-2007 dataset. We therefore apply
100k iterations of training to optimize the ImageNet model
over our 28k social image dataset.

• Method 3: SIFT with BoVW – SIFT descriptors encode
local gradient information. We resized images, preserving
aspect ratio, with width constrained to 300 pixels. Dense
SIFT descriptors are extracted within 32× 32 windows
spaced at regular intervals (4 pixels), descriptors are the
encoded into a BoVW representation using K = 2000.

• Method 4: PHOW-Color with BoVW – PHOW is a
variant of SIFT at multiple scales. The descriptor is
computed independently over each channel of the HSV
colour space, and the results concatenated. We form a
BoVW representation similarly using K = 2000.

In all of the above experimental configurations the resultant
descriptors are normalized by `1 norm.

C. Evolutionary Data Purification
We partition the social media dataset evenly into training,

validation and test sets (approximately 1.7k images each). The

auxiliary (Google Image) data is then used to augment the
training data resulting in a training corpus of approximately
25k images. Due to the potential presence of multiple labels per
images, we train a binary classifier (SVM) independently for
each concept (sports, family, etc.). As later shown in Sec. III, it
is possible to gain a substantial performance boost by training
each classifier with a limited subset of the available data.
Our problem is to select that optimal subset for each of the
classifiers. We do so by iteratively turning on/off items of
training data, and evaluating the trained model against the
validation set. Clearly the space of training data configurations
is very high dimensional and this optimality criterion makes
the space also very turbulent. Stochastic searches that model
evolutionary processes, such as Genetic Algorithms (GAs), are
often cited among the best search strategies in such situations;
large regions of problem space can be covered quickly, and
local minima more likely to be avoided [13], [14].

We optimize the data selection for each classifier using a
GA. The GA encodes the selection of training data as a binary
genome applying principles of natural selection to iteratively
‘breed’ better solutions. A population of individuals, each
corresponding to a data selection solution, are initially seeded
at random. We represent the population as Q×N matrix X(t)
coding for a population of Q = 50 individuals at generation
t, each of which has genome N bits in length, one per per
data item. Note that the population does not change side over
generations. Individuals are bred at together to produce succes-
sive generations i= [2,250] of the population through processes
modeling genetic cross-over, genome mutation, and fitness-
proportionate reproduction (Fig. 2). Each of these processes
are defined in the following paragraphs. We choose a maximum
of 250 iterations, identified through observation of the fitness
function indicating this to be where improvement plateaus
(Fig.3). Although the trajectory in fig.3 indicates continual
improvement, there is increasing risk of over fitting to the
validation set as iterations of GA continue.

I Fitness-proportionate selection For each member of the
population an SVM classifier is trained using only data
items indicated by positive bits in Xi,1..N(t). We opt for lin-
ear kernels within the SVM, as non-linear kernels require
computationally expensive training as well as additional
parameter optimization that prohibit practical application
in a GA evaluation loop. The set of classifiers trained
for each individual M = {M1, ...,MQ} are then evaluated
against the validation set, to yield a fitness score F(i; t)
for each individual as follows.
For each item in the validation set V = {v1, ...} we have
also a binary ground-truth for the presence of the concept,
forming binary vector L = {l1, ...}. We first normalize the
response for classifier Mi by normalizing the distance of
each validation datum v j from decision boundary through
a sigmoid S(v j;Mi):

S(v j;Mi) =
1

1+ exp(−12N (Mi(v j))−0.5)
(1)

where N (.) is the normalization by the min and max limits
of the model identified over the training data. Resulting in
[0→ 1]∈ℜ probability ρ(v j), of the concept being present.



Fig. 2: Illustration one iteration of GA optimization. A new population of genomes are stochastically generated via fitness
proportionate selection, dependent on the performance of a classifier (trained using the selected data subset) over a validation
set. The fittest 20% of individuals are selected via elitism and given a free-pass to the next generation. The remainder are evolved
through genetic cross-over and mutation.

A binary decision vector D = {d1, ...} for presence of the
concept is obtain thresholding d j = ρ(v j)> 0.5.
The fitness F(i; t) of individual i is expressed as the
precision over the validation set:

F(i; t) = 1−
∑
|V |
j=1 d j⊕ l j

|V|
(2)

To produce the generation Xt+1, the best performing 20%
individuals are given a ‘free-pass’ (copied directly) to
the next generation, implementing elitism. The remaining
80% of the next generation, are created through fitness
proportionate selection. Individuals within Xt are sampled
stochastically (with replacement) with a bias to F(i, t),
and pairs of parents are subjected to genetic cross-over
producing a new offspring that is mutated and added to
Xt+1.

II Genome Cross-Over occurs between the two selected
parents in order to define a new individual for Xt+1. A
split point [1,N] is identified randomly within the genome
and the two parents are spliced together at that point
to a single new genome. This process results in a new
combined configuration of training samples to be selected.

III Genetic Mutation The offspring resulting from cross-
over is subjected to mutation to induce diversity in the
population, countering the homogenizing effect of elitism.
Each bit of the offspring’s genome is visited and flipped
with a 1% change, introducing (or removing) training
samples that may have been in a dormant state in the initial
configuration.

The computationally expensive step is the complete eval-
uation of the population Xt , motivating practical use of linear
SVMs within the GA loop over potentially beneficial non-linear
SVM kernels. This does not preclude the final data selection
at t = 250 being used to train a non-linear e.g. RBF kernel
SVM. In many cases there is a performance increase in doing
so (Sec. III) but given the optimization of the fitness function
is governed by a linear kernel this may not always be so. In
rare cases the use a final RBF kernel results in a decrease in
performance, detectable through use of the validation set. In the
cases where there is a decrease in performance, we can revert to
a linear SVM model. This effect is predominantly seen within

Fig. 3: Iterations of GA training showing the relative perfor-
mance gain of the best performing genome over the validation
data. Showing one fold for the 9 concepts for the Optimized
CNN feature type (Method 2)

’Friends & Peer Relationship’ concept that is challenging to
distinguish from ’Family & Pets’ and ’ Parties & Celebrations’
all of which exhibit similar visual cues.

III. RESULTS AND DISCUSSION

We evaluate classifier performance (with and without appli-
cation of our data purification technique) using 5-fold cross-
validation over our social media dataset. Recall that this data
is split evenly into training, validation and test data yielding
∼ 1.7k images in each partition. The auxiliary data from Google
was used only to bolster the training set (to ∼ 25k images).
For each of the descriptors evaluated (Sub-sec. II-B) training
is performed via this data. The validation set is used only for
experimental configurations using data purification.

Table I shows the mean results over the folds. We split the
results into two tables for deep and shallow feature types, for
easier comparison. We additionally highlight the top performing
configuration per concept group for each of the tables. We
compare final SVM classifiers using both linear kernels and
non-linear (RBF) kernels. As expected the results show CNN-



Fig. 4: Visual examples of label annotation using Method 2 where the initial classifier labels are displayed on the left of the
image and the final labels after GA is performed are presented on the right.

Descriptor Method 1: CNN features Method 2: Optimized CNN features
Phase Initial Post GA Initial Post GA

Classifier Kernel Linear RBF Linear RBF Linear RBF Linear RBF
Art 13.8 ± 3.68 28.8 ± 1.97 29.9 ± 1.05 36.0 ± 4.60 23.9 ± 2.19 29.7 ± 1.70 35.6 ± 1.51 31.2 ± 1.85

Attitudes & Beliefs 4.96 ± 0.88 8.49 ± 0.47 10.6 ± 0.54 16.9 ± 2.05 7.46 ± 0.36 13.0 ± 2.50 16.5 ± 1.47 14.5 ± 3.25
Family & Pets 31.2 ± 2.41 29.1 ± 1.00 32.3 ± 1.07 34.2 ± 2.21 29.7 ± 1.47 40.9 ± 1.66 46.8 ± 3.97 43.1 ± 2.23

Food 7.64 ± 1.42 30.6 ± 1.61 27.7 ± 2.85 55.1 ± 6.22 15.9 ± 1.18 33.1 ± 3.53 34.6 ± 4.31 38.4 ± 2.80
Relationships & Peer 5.41 ± 1.88 11.4 ± 0.54 14.3 ± 0.63 11.7 ± 4.50 11.1 ± 1.29 16.1 ± 1.40 20.2 ± 1.44 16.8 ± 1.76

Holidays & Travel 14.7 ± 3.48 28.3 ± 0.72 26.9 ± 2.02 39.8 ± 2.98 22.1 ± 0.87 29.6 ± 0.91 32.6 ± 1.03 32.0 ± 1.58
Parties & Celebrations 8.73 ± 2.42 20.0 ± 1.05 21.3 ± 0.59 20.6 ± 3.25 17.1 ± 2.16 28.2 ± 3.22 32.3 ± 2.13 28.5 ± 3.74
Style & Self Imagery 21.4 ± 5.48 30.3 ± 0.57 33.3 ± 1.51 37.4 ± 2.10 28.3 ± 2.59 37.8 ± 2.49 41.9 ± 3.42 40.6 ± 2.49

Sports 12.2 ± 2.43 20.0 ± 1.36 23.0 ± 1.00 25.0 ± 4.32 18.5 ± 1.20 24.8 ± 2.10 29.9 ± 2.11 26.0 ± 2.49

Mean 12.2 ± 2.67 23.0 ± 1.03 24.4 ± 1.25 30.8 ± 3.58 19.4 ± 1.48 28.1 ± 2.17 32.3 ± 2.38 30.1 ± 2.40

Descriptor Method 3: PHOW-Color with BoVW Method 4: SIFT with BoVW
Phase Initial Post GA Initial Post GA

Classifier Kernel Linear RBF Linear RBF Linear RBF Linear RBF
Art 15.0 ± 1.70 18.1 ± 0.39 22.6 ± 0.85 37.4 ± 12.3 14.2 ± 0.77 18.4 ± 0.54 21.4 ± 1.19 26.6 ± 3.05

Attitudes & Beliefs 4.83 ± 0.52 16.7 ± 2.55 36.8 ± 6.74 20.0 ± 3.83 4.97 ± 0.69 14.3 ± 2.89 27.8 ± 10.4 29.4 ± 9.33
Family & Pets 16.1 ± 0.41 19.7 ± 0.29 24.2 ± 0.98 25.0 ± 1.97 16.8 ± 0.41 21.3 ± 1.91 24.4 ± 1.57 24.0 ± 4.52

Food 6.17 ± 0.51 23.8 ± 3.29 44.0 ± 5.95 27.6 ± 6.73 6.12 ± 0.73 18.9 ± 3.92 24.8 ± 7.73 22.8 ± 6.20
Relationships & Peer 6.39 ± 0.62 13.7 ± 3.88 20.5 ± 2.75 2.86 ± 6.39 6.28 ± 1.07 12.8 ± 1.45 16.7 ± 2.68 12.2; ± 21.3

Holidays & Travel 11.4 ± 1.26 26.8 ± 0.68 30.3 ± 1.56 41.6 ± 1.69 12.6 ± 2.00 26.4 ± 0.73 28.3 ± 1.81 40.4 ± 2.71
Parties & Celebrations 7.39 ± 0.24 16.3 ± 1.02 22.1 ± 1.77 17.3 ± 5.48 6.48 ± 0.57 16.9 ± 0.87 22.0 ± 4.31 16.9 ± 0.87
Style & Self Imagery 19.2 ± 0.99 23.1 ± 0.85 28.2 ± 0.62 30.4 ± 2.32 19.0 ± 1.00 23.4 ± 2.20 26.5 ± 2.29 29.8 ± 3.08

Sports 10.3 ± 1.89 16.6 ± 1.19 22.0 ± 2.60 16.6 ± 1.19 9.71 ± 1.30 0.00 ± 0.0 20.9 ± 2.27 0.00 ± 0.0

Mean 10.7 ± 0.96 19.4 ± 1.57 27.8 ± 2.65 26.6 ± 5.28 10.7 ± 0.96 16.9 ± 1.61 23.7 ± 3.81 24.8 ± 7.83

TABLE I: Average per-class precision over folds for the four types of feature (sec. II-B). Demonstrating the performance
difference between linear and non-linear (RBF) kernels before and after the GA optimization process.

derived features to out-perform the traditional gradient domain
descriptor/BoVW models with the best performing deep rep-
resentation before GA purification improving by 44% on the
shallow descriptors. We observe that without any additional
processing the optimized (fine-tuned) CNN results yield a 22%
and 58% improvement for RBF and Linear classifier kernels
respectively. Within shallow representations generally PHOW
outperforms SIFT with 14% in the case of RBF kernel. It
is interesting to note categories Art and Attitudes & Beliefs,
using the BoVW approaches out-perform those of the CNN.
However, for Sports, the SIFT descriptor fails to discriminate.

In the best case, GA purification yields a mean precision over
all concepts of 32% representing a 67% relative improvement
over non-purified training data. Despite the intractability of
including a non-linear kernel within the GA optimization
loop, using the identified training data subset to learn a non-
linear classifier as a final step always equals or betters the
performance of the system. This is shown over all configu-
rations except Optimized CNN where the RBF is only able
to get a marginal improvement due to higher precision of
results pre-purification. The Linear SVM over Optimized CNN
features performs best of all, in terms of both precision and



computational performance. The PHOW feature is generally
more unstable across folds than CNN based features with a
higher standard deviation. Fig. 4 visually illustrates the benefits
of purification quantified in Table I. Green ticks and red
crosses indicate the correctness of automatically annotated tags
generated by classifiers trained with, and without, purified data.

For one class and one fold of the GA on a dual 3.4GHz hex-
core Intel CPU takes 2.2 hours to complete (excluding feature
extraction, which varies between descriptor choice). In total our
experiments take approximately 20 hours to perform the GA
purification for all data and over all classes. GA implementation
can easily be optimized by distributing computation of the
evaluation step e.g. via map-reduce. However our experiments
focus on a single-thread CPU implementation to provide a
solid benchmark. In the case of Fine-tuned CNN it takes an
additional 12 hours to fine-tune the ImageNet model on a
GeForce GTX 660 Ti GPU.

IV. CONCLUSION

Automated labeling of imagery on social networking sites
is challenging due to high intra-class content diversity, poor
image quality, and the high-level semantic nature of concepts
typically desirable to label in such data. Consequently high
volumes of training data are needed for supervised classification
tasks, which often exhibits noisy annotation. We have presented
a technique for enhancing the precision of supervised classifiers
over such data, using an optimization strategy to select an
optimal subset of noisy annotated data to train the classifier.
Applying our GA purification approach to select this optimal
subset we are able to improve precision relatively by 67%
over classical approaches that use all training data. Future
work could explore different feature modalities e.g. comment
field text and the potential of applying data fusion within our
framework to further enhance classifier performance.
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