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Figure 1: Our approach searches a dataset of chair 3Dmodels (top left) using free-hand drawn sketches within a virtual reality.
Our setup consists of Oculus RIFT, Oculus Touch and a laptop (bottom left). Sketches can be made either on top of a template
chair or a prior search result (right).

ABSTRACT
We describe a novel method for searching 3D model collections
using free-form sketches within a virtual environment as queries.
As opposed to traditional sketch retrieval, our queries are drawn
directly onto an example model. Using immersive virtual reality the
user can express their query through a sketch that demonstrates the
desired structure, color and texture. Unlike previous sketch-based
retrieval methods, users remain immersed within the environment
without relying on textual queries or 2D projections which can
disconnect the user from the environment. We perform a test using
queries over several descriptors, evaluating the precision in order to
select the most accurate one. We show how a convolutional neural
network (CNN) can create multi-view representations of colored
3D sketches. Using such a descriptor representation, our system
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is able to rapidly retrieve models and in this way, we provide the
user with an interactive method of navigating large object datasets.
Through a user study we demonstrate that by using our VR 3D
model retrieval system, users can perform search more quickly
and intuitively than with a naive linear browsing method. Using
our system users can rapidly populate a virtual environment with
specific models from a very large database, and thus the technique
has the potential to be broadly applicable in immersive editing
systems.
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1 INTRODUCTION
In recent years, with the rapid growth of interest in 3D modeling,
repositories of 3D objects have ballooned in size. While many mod-
els may be labeled with a few keywords and/or fields that describe
their appearance and structure, these are insufficient to convey
the complexity of certain designs. Furthermore, in many existing
databases, these keywords and fields are incomplete. Thus query-
by-example methods have become a very active area of research.
In query-by-example systems (see Section 2), the user typically
sketches elements of the object or scene they wish to retrieve. A
search system then retrieves matching elements from a database.

In our system, the user is immersed in a virtual reality display.
We provide a base example of the class of object to act as a reference
for the user. The user can then make free-form colored sketches
on and around this base model. A neural net system can analyze
this sketch and retrieve a set of matching models from a database.
The user can then iterate by making further correctional sketches
(e.g. adding new pieces to the model) until they find an object that
closely matches their intended model. This leverages the strengths
of traditional approaches while embracing new interaction modali-
ties uniquely available within a 3D virtual environment.

The main challenge in sketch-based retrieval is that annota-
tions in the form of sketches are an approximation of the real
object and may suffer from being a subjective representation and
over-simplifications. These abstract representations present chal-
lenges to description methods and therefore require unique con-
sideration. For image retrieval, methods focus on enhancing lines
through gradients, GF-HOG [Hu and Collomosse 2013] and Tensor
Structure [Eitz et al. 2011] or using or multidimensional indexing
structure such as NB-Tree [Fonseca et al. 2004], with more recent
approaches based on convolutional neural networks (CNNs) [Bui
et al. 2017; Yu et al. 2016]. In contrast for 3D, the use of sketching
for retrieval has been limited to 2D projections for matching [Eitz
et al. 2012]. To match 3D models, it is typical to normalize models
to have the same orientation, so that a set of consistent images
at set orientation can be rendered to compare the sketch to (see
Section 2.2.2). We adopt this view-based method as it allows an
interactive experience where users get responses with little delay.

So far, sketching within a virtual environment as a retrieval
method has received little attention. There are various tools to
allow the user to sketch (e.g. Tiltbrush, or Quill), but these focus on
the sketch itself as the end result. Other systems allow free-form
manipulation of objects by simple affine manipulation through drag
points [Santos et al. 2008]. In contrast, we instead are interested in
how a user can utilize sketch as a method of retrieval. We therefore
performed a user study to compare sketch-based retrieval to a naive
linear browsing to demonstrate that sketching is an effective and
usable method of exploring model databases.

The contributions of our work are four-fold. First, we present a
novel approach to searchingmodel collections based on annotations
on an example model. This example model represents the current
best match within the dataset and sketching on this model is used
to retrieve a better match. A novel aspect of our method is that we
allow users to make sketches directly on top of existing models. The
users can express color, textures and the shape of the desired object.
Second, we evaluate different descriptors through a preliminary

study in order to select the most accurate one, discovering that
CNN achieves the highest precision. Third, we perform a user study
to demonstrate the advantages of a sketch-based retrieval system
in contrast to naive search. We show that users understand the
purpose and practical use of a sketch-based retrieval system and
that they are easily able to retrieve target objects from a large
database. Finally, our system is the first of its type to work online in
an immersive virtual environment. This model retrieval technique
can be broadly applied in editing scenarios, and it enables the editor
to remain immersed within the virtual environment during their
editing session.

In the remainder of the paper, Section 2 reviews virtual environ-
ment modeling, sketching and representation methods. Section 3
explains the intricacies of our virtual environment model retrieval
system and the novel use of interactive machine-learning-based
searches to enable an iterative sketch and query refinement process.
Section 4 presents a user study to demonstrate its effectiveness in
terms of both accuracy and user experience rating. We then discuss
the comparison between descriptors and the search technique in
Section 5 and describe future work and limitations in Section 6. We
then conclude in Section 7.

2 RELATEDWORKS
Sketching represents a natural way for people to convey informa-
tion. Eitz [Eitz M. 2012] give an overview of how people sketch
objects and how sketches are recognized by humans and comput-
ers. The fundamental supposition is that sketches approximate the
real world object. On the other hand, since the average user is not
an artist, the subjective representation of an object can be iconic
and include possible simplification of the objects. We explore the
implications of this for both retrieval and interaction with respect
to both 2D (Image) and 3D domains.

2.1 Sketch-based Image Retrieval
Identifying and associating a sketch with a specific object in an im-
age represents a hard challenge. However, it is an attractive strategy
because the use of sketch interaction is an opportunity to broaden
the user base to those who are unfamiliar with complex interac-
tive editing systems. Various methods for retrieving images from
sketches have been developed. These systems are referred to as
sketch-based image retrieval (SBIR) systems [Birari D.R. 2015]. SBIR
techniques can be classified into two classes: blob-based techniques
that focus the attention on features such as shape, color or texture,
and contour-based techniques that describe the image using curves
and lines. Techniques belonging to the blob-based SBIR class try
to describe image through descriptors such as QBIC [Ashley et al.
1995] which use separately color, texture and shape or [Sousa and
Fonseca 2010] which uses topology models. Contour-based tech-
niques include elastic matching [Bimbo et al. 1994] and grid and
interest points such as edge points [Chalechale et al. 2005].

In recent years researchers have applied machine learning algo-
rithms to SBIR. SketchANet [Yang and Hospedales 2015] is a simple
neural network based on Alexnet that performs sketch recogni-
tion. Qi [Qi et al. 2016] introduce a siamese CNN which aims to
measure the compatibility between image edge-map and sketch
used as CNN inputs. Bui [Bui et al. 2016] did a review of different
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triplet CNN architectures for evaluating the similarity between
pictures and sketches, focusing on the capacity to generalize be-
tween object classes. Triplet architectures (Wang [Wang et al. 2014],
Sangkloy [Sangkloy et al. 2016]) have attracted increasing attention
for the relationship of the three branches when processing the loss
function: firstly the anchor branch (modeling the reference object),
secondly a branch which models positive examples and thirdly a
branch that deals with negative examples.

A strategy to improve the performance of image retrieval sys-
tems is to put the user ‘in the loop’ and take advantage of iterative
refinement. This technique is called relevance feedback in infor-
mation retrieval and was introduced in Content-Based Retrieval
by Sciascio [Sciascio et al. 1999]. Several applications based on in-
teractive sketch systems have been created. For example, Shadow
Draw of Haldankar [Lee et al. 2011], iCanDraw [Collomosse et al.
2008], Sketch-to-Collage [Ruiz et al. 2007] and CALI system from
Fonseca [Jota et al. 2006].

2.2 3D Sketch-based Retrieval and Interaction
Finding features that represent 3D objects is a unique challenge
in the retrieval domain. Since one of the most important cues in
object recognition is 3D geometric shape, sketching in 3D could
represent a problem due to the abstract nature of the sketch. In
addition, before sketch interpretation, a simplification process of
the stroke can be taken for avoiding noisy samples [Fonseca et al.
2012] since both the tracking device and user generate noise during
sketch acquisition.

In recent years, to depict a 3D model, researchers have proposed
two type of descriptors : model-based and view-based.

2.2.1 Model-based descriptors. Measuring similarities between
3D models is a hard problem. Object models can differ in shape,
color and orientation in 3D space, making the definition of a simi-
larity measure challenging. Different categories of descriptors were
created to overcome this challenge: geometric moment, surface dis-
tribution and volumetric descriptors. Geometric moment [Bronstein
M. A. 2009] is a class of topology invariant similarity methods based
on vector coefficient extracted by a shape decomposition under spe-
cific basis. Surface distribution [Osada et al. 2002] tries to measure
the global properties through a shape distribution achieved by sam-
pling a shape function and in this way reduces a shape comparison
to a simpler distribution comparison. Volumetric descriptors [Rusta-
mov 2010] combine shape distributions with barycentroid potential
for achieving a more robust pose and topology invariant similarity.
Despite the extensive research on descriptors that allows extract-
ing shape characteristics, only with the advent of deep learning
architectures such as Restricted Boltzmann Machines (RBM), Deep
Belief Networks (DBN) and Deep Boltzmann Machines (DBM), and
in particular CNN [Lecun et al. 1998] have achieved a relevant im-
provement of outcomes in object recognition. Wu [Wu et al. 2015]
recently proposed a method to represent a 3D object through the
distribution of binary variables in a volumetric grid, and use of Con-
volutional Deep Belief Networks to extract features and recognize
them.

2.2.2 View-based descriptors. View-based descriptors use 2D
projections of the objects from different points of view. Since a large

amount of data that can be collected in this way, these methods out-
perform model-based descriptor approaches. Ansary [Ansary T.F.
2007] introduce a model-index technique for 3D objects that make
uses of 2D views. It uses a probabilistic Bayesian method for 3D
model retrieval. Alternatively, Su [Su et al. 2015a] present a frame-
work using view-based descriptors, creating 12 views for each ob-
ject that feed a first CNN for feature extraction, and after a pooling
stage, the results are passed to another CNN for achieving a com-
pact shape descriptor. Similarly, Leng [Leng et al. 2016] proposed a
3DCNN that manages multiple views and considers possible inter-
actions between them. In a pre-process stage a sorting algorithm,
which takes in consideration the angles and positions, prepares
three different sets of viewpoints and the network is fed with them
at the same time. This is a different approach from the classic one
which uses only one view at a time and it confers stability during
the training stage.

Li [Li et al. 2017] elaborates a technique that combine two com-
ponents: an adaptive view clustering algorithm that selects repre-
sentative views of the 3D model, and a sketch-based approach that
compensates the difference between iconic representation of the
object given by sketch depiction and the detailed appearance of the
same object.

Our method uses view-based descriptors, rather than model-
based descriptors because they have demonstrated more practical
utility on similar problems.

Recent studies combine data achieved by sketch and an additional
input to increase accuracy, or infer information from the relation-
ship with other object in the scene. Funkhauser [Funkhouser et al.
2003] proposed a combination of sketch and text query to identify
3D objects. They showed that the combination of the two methods
results in a better accuracy of the results. Shin and Igarashi [Shin
and Igarashi 2007] with Magic Canvas provided the user with a
system for 3D scene construction using sketches, based on sketch-
object similarity. In addition, the system determines the position
and orientation of the object according to the sketch. Xu [Xu et al.
2013] with Sketch2Scene proposed a novel framework for scene
modeling through sketch drawing that suggests also the placement
of the objects via functional and spatial relationship between ob-
jects.

Critically these methods have generally used 2D sketches. Our
system allows the user to sketch in 3D.

2.2.3 3D sketching. 3D sketch-based model retrieval has gained
significant attention in recent years. Li [Li et al. 2016a] made a
comparative evaluation of different 3D sketch-based model retrieval
algorithms showing that CNN in combination with edge or point
sketches achieved the best accuracy. Ye [Ye et al. 2016] described
CNN-SBR, a CNN architecture based on SketchANet [Yang and
Hospedales 2015] and trained with TU Berlin dataset [Eitz M. 2012].
Using data augmentation to prevent overfitting, they showed a
considerable improvement in comparison to non-learning based
and other learning-based algorithm.

Considering alternative uses of sketch interaction within a 3D
context, Wang [Wang et al. 2015] present a minimalist approach in
terms of view-based descriptors. They generate only two views for
the entire dataset and train a Siamese CNN with the views and the
sketches. Nishida [Nishida et al. 2016] proposed a novel method to
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Figure 2: A collage of the chairs class models from ShapeNet dataset [Wu et al. 2015]. The collage shows a subset of the total
set of 3370 chairs in order to illustrate the diversity of this class of object.

design buildings from sketches of different parts of them. The user
sketches few strokes of the current object and through a pre-trained
CNN for that specific object type, the system is able to procedurally
retrieve the correct grammar snippet and select the most similar
one. The final step of the process is to combine all the snippets in a
unique grammar of the building just created.

2.2.4 Immersive Sketching. Immersive sketch-based modeling
has gained a lot of attention over the years. A very early example
is Clark’s 3D modeling system for a head-mounted display [Clark
1976]. The system of Butterworth [Butterworth et al. 1992] sup-
ported several geometric modeling features, including freehand
operations. More recently many immersive 3D modeling systems
have exploited freehand sketching such as BLUI [Brody and Hart-
man 1999], CavePainting [Keefe et al. 2001], Drawing on Air [Keefe
et al. 2007], FreeDrawer [Wesche and Seidel 2001], Holosketch
[Deering 1996] and Surface Drawing [Schkolne et al. 2001]. Very
recently applications for consumer virtual reality systems such as
Tiltbrush from Google and Quill from Facebook have raised aware-
ness of sketching for content development. The most similar work
to ours is the system Air Sketching for Object Retrieval [Beatriz S.
2015]. This combines 3D sketch and a search engine based on the
spherical harmonic descriptor. Our system uses a different type
of lightweight sketching over basic models and a view-based de-
scriptor. Another similar system that is that of Li [Li et al. 2016b],
a content retrieval system that can benefit from sketch-based in-
teraction using a Microsoft Kinect. Possibly because the sketches
are relatively crude, they focus on distinguishing between classes
of object. We focus on precise sketching to distinguish between
similar objects in a large class of objects. Also, we enable sketching
over existing models, rather than sketching from scratch.

3 3D SKETCH-BASED RETRIEVAL DESIGN
Sketch-based retrieval has had great success within 2D image re-
trieval, yet is still cumbersome when extended to 3D. We propose
that by utilizing recent advances in virtual reality and by providing
a guided experience, a user will more easily be able to retrieve rele-
vant items from a collection of objects. We explore the proposed
methodology on ShapeNet [Wu et al. 2015]. ShapeNet is an exten-
sive 3D model collection that includes a large set of model classes.

We demonstrate our method to the subset of this collection that
contains chairs, although our method is applicable to many classes
of object. The chair subset is large and exhibits a large amount of
variation that is particularly suitable for our method (see fig. 2).
We first outline our proposed Sketch-based Retrieval pipeline (sub-
sec. 3.1) then go on to define a study to demonstrate the benefits of
using such a method compared to naive linear searching (sec. 4).

3.1 3D Sketch-based Retrieval
Searching for a model in a large collection using 2D sketches can
be tedious and requires an extended period of time. It also requires
a particular set of skills, such as understanding perspective and
occlusion. By using virtual reality this experience can be improved
because ambiguity between views is greatly reduced and the user
no longer has to imagine the projections from 2D to 3D.

3.1.1 3D Sketch Descriptor. Sketching within a 3D environ-
ment has been explored through stroke analysis [Choi et al. 2005;
Fiorentino et al. 2003; Rausch et al. 2010], but little work has been
performed to describe the set of strokes in a compact representa-
tion, i.e. descriptor, such as in SBIR [Eitz M. 2012] or SBVR [James
and Collomosse 2014]. Therefore we explore state-of-the-art model
descriptions approaches. We apply four traditional Bag of Words
approaches: SIFT [Lowe 2004],Histogram of Gradients(HoG) [Dalal
and Triggs 2005],Gradient Field Histogram of Gradients (GF-HoG)
[Hu and Collomosse 2013] and ColorSIFT [Abdel-Hakim and Farag
2006]. It is worth noting that only ColorSIFT descriptor incorpo-
rates a description of color. In addition, we apply a multi-view CNN
architecture to describe the content of the model.

Each proposed method generates a unique descriptor of the
chair. To generate a single vector description of a model the chair is
projected into 12 distinct views as shown in fig. 3. Each view is then
described by an independent model. This exhibits an early fusion
approach which we describe for both deep and shallow descriptor
generation methods.

In the multi-view CNN architecture [Su et al. 2015b] the standard
VGG-M network of [Chatfield et al. 2014] is applied. This model
consists of five convolutional layers and three fully connected layers
(depicted in fig. 4). As in [Su et al. 2015b] the model is trained
on ImageNet then fine-tuned on the 2D images of the 3D Shapes
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Figure 3: (a) CNN can be triggered with snapshots with both
sketch and chairmodel. (b): CNN can be triggered with snap-
shots with only sketch present.

dataset. For each view of the model the convolutional layers of the
VGG-M are applied where the resulting descriptors are aggregated
by element-wise max pooling. The result of the max-pooling is
then fed through a second part of the VGG-M network (i. e. f c
layers) where the second fully connected layer (f c7) is used as the
descriptor for the view (V ) resulting in V ∈ R4096. The VGG-M
network is trained once and shared amongst views.

For SIFT, ColorSIFT, HOG and GFHOG, we used the bag of words
(BoW) mechanism to generate a descriptor from all the views. The
BoW implementation is defined with K = 1024 clusters that repre-
sent the visual words and where the frequency histogram across
views is accumulated to generate a singular descriptor, V ∈ R1024
for these methods.

We perform a preliminary evaluation of the descriptors for re-
trieval of models (See Section 5.1) and identify the approach of
Su [Su et al. 2015b] to significantly outperform the alternative
methods, henceforth we discuss the approach in regards to this
descriptor. An index is generated from the dataset by repeating
the aforementioned process over the dataset generating a matrix
M = Dn×4096 where n is the number of items in the collection.

3.1.2 Online Queries. At query time, the multiple views are
generated from the user’s sketches and, optionally the current
3D model that is the best match (see below), and a forward pass
through the network returns the descriptor. For simplicity and ease
of comparison of results, we leave M to be linearly searched at
query time. Improved efficiency could be achieved by using KD-
Trees or other popular index structures. Therefore, we define the
distance d as squared Euclidean:

di = |Mi −Q |2 (1)

where Q is the query descriptor. After comparing the descriptor
with the descriptor collection the system replies with the K-nearest
models that fit the input sent. In our experiments we use K = 40.
The retrieved models are ordered by their respective ri distance.

96x7x7

256x5x5

512x3x3

512x3x3

512x3x3 40964096

Convolutional

layers

Fully

connected

layers

Figure 4: Each view is processed by the shown VGG-M ar-
chitecture model [Chatfield et al. 2014]. As demonstrated in
fig. 3 the network is split after convolutional layers the final
Multi-View descriptor is the output of the network a vector
of 4096 scalars.

We provide the user two ways to perform the query: sketch-
only query or both sketch and model query. This is achieved by
enabling or disabling the visualization of the model (see fig. 3).
After the system proposes results, if the user’s target model is not
present the user can edit the sketch or conversely can replace the
current model with a new one that better matches represents the
desired target. Such a possibility helps the user to minimize the
time sketching: they can focus on sketching the missing or different
parts relative to the current best match model. This facilitates a step
by step refinement to navigate through the visual feature space of
the collection, commonly achieving the target model only after a
few iterations. In the current implementation (see Section 4.3) the
response time after each user search request is 2 seconds. This is
sufficiently quick to allow a tight interactive loop between sketching
and querying. Users are free to either make a complex sketch that
will likely match on the first attempt, or add features to the model
in several iterations, thus facilitating a ‘walk’ through the model
collection towards the desired target.

4 USER STUDY: COMPARISON OF SKETCHED
QUERIES OVER LINEAR SEARCH IN VR

4.1 Task Overview
We designed an experiment to compare two methods: the proposed
sketch-based method, and a naive scrolling panel method. For each
session of the test, we first showed the participant the twelve views
of a target chair as generated for the descriptor. We then asked
the participant to retrieve the chair from the database, using one
of the two methods. For both methods the participant started in
a scene of a furnished room where a chair is positioned on the
floor to the user’s left-hand side. We perform this initialization
step to minimize the required hand travel distance avoiding any
mobility bias. We tracked the success rate, the time to complete the
task and a subjective evaluation of the user experience through a
questionnaire.
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The scroll method consists of finding the target chair from the
entire collection of 3370 chairs using a panel that shows 10 chairs
at once and which can be scrolled forward and backward very
quickly. After the user starts the session, the chairs are randomly
shuffled to prevent recall of the order from memory. The user then
simply searches for the target chair (see fig. 5). When the user is
confident that they have found the chair, they select it from the
panel in order to replace the current chair in the room. When the
participant clicks the end label, the time required to complete the
task is taken and the session is finished. For the sketch method,
the user makes colored sketches on top of the initial model (see
fig. 6) and then uses the hand-held device to trigger the search
method. The system proposes 40 chairs as outcome, shown 10 at a
time in a scroll panel which is navigable in the same fashion as the
scroll method. The participants would iteratively sketch, triggering
the retrieval system or selecting models from the 40 suggestions
then continue to refine the sketch. The search refinement process
continues until the target chair is located and the user can terminate
the session.

4.2 Procedure
All participants are asked to complete an introduction form with
basic information related to their previous user experience in 3D
software and VR applications. Each user performs two sessions
of tests. Where each session is comprised of two sub-sessions. In
each sub-session, the user performs three search tasks for different
chairs models with one method, and then the same three searches
with the other method.

Participants were instructed before each of the four sub-sessions
with an application demo in which it will be shown the modality
they had to use. In addition, they could select to practice for a
short time to familiarize with the interaction. Each of the search
tasks was started by asking the user to look at a particular target
chair with the instruction find it using the selected method. For
the sketch-based method, we instructed the user to use the style
they prefer, that could be based predominantly on making a single
sketch or on system interrogation with multiple iterations of model
replacement. Each user was allowed to perform the task seated or
standing. An upper time limit was defined as 4 minutes in order to
keep each user session slightly less than an hour. In the event the
user was unable to locate the target chair within the time limit or
the wrong chair was selected, the search was considered a failure

Figure 5: The scroll method provides a simple scrolling
panel for navigating the database of all the chairs.

Figure 6: An example of a user’s sketch within the sketch in-
terface. The query is comprised of colored 3D strokes drawn
on top of a chair model.

and the time cropped to 4 minutes. The two sessions differed in
starting method used and from the different set of target chairs; thus
the order of the methods is counter-balanced, and each subject uses
both methods twice. We split the users into two groups: the first
group started with the naive scroll method in the first session, while
the second started with the sketch method. In total each participant
performed 12 searches. In this way, we were able to analyze the
task completion time considering the contribution related to the
different techniques, to the chair types and to the learning curve
effect of VR interaction. We choose six different chairs with specific
structure and colors. In particular, both striped and curvy shapes are
present in the sets with a variety of different colors as shown in fig.8.
After completing all four sub-sessions (12 search tasks), participants
filled in a final form with their rating on user experience and level
of confidence for both scroll method and sketch method. The scale
of the rating was expressed in the form of a scalar from 1 to 5.

4.3 Implementation
The participants used an Oculus Consumer Version 1 (CV1) head-
mounted display (HMD) as well as Oculus Touch controllers. The
experiment was performed on a PC laptop with a Processor Intel(R)
Core(TM) i7-6700 CPU, NVIDIA GeForce GTX 980M graphics card
and 64 GB of RAM.

The virtual reality software was created within Unity. The scene
consisted of a furnished room, with the addition of a chair when
the system was initialized. During the scroll-based method, the user
can select models from a floating panel in which can scroll pages
of models and display 10 models at time. The panel is attached
to the left hand and the selection is performed using right-hand
controller. Ten models were chosen so as to provide a panel that
was small enough not to occlude large parts of the environments,
but large enough that features in the chair were easily legible inside
the HMD.

The sketching mechanism is implemented through the genera-
tion of colored lines. Lines are implemented as narrow strips that
expose their wider section to the current camera. Therefore, each
virtual camera, used for multi-view generation, renders the larger
section of the strip independent from the sketch path. The user can
the color using a palette connected to the left-hand GUI. The user
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can draw 3D lines in the virtual environment on top of the current
model and can submit to the system using the controller’s triggers.
We provided also a simple UNDO function that acted on the sketch
stack. We did not provide additional tools in order to stimulate
users to play essentially with pure sketch interaction. The back-end
is a separate service thread in which a CNN Model is preloaded
and ready to respond to user queries. We integrated the VGG-M
Matlab implementation of Su [Su et al. 2015b]. This is triggered to
produce a unique visual descriptor given the snapshots generated
by VR application as described in sec.3.1.
To maintain a reasonable computation time, the first convolutional
layers (see figure 4) use stride 2, while the latter layers are used
as normal. On average the CNN process takes approximately 0.5
seconds to produce a descriptor after receiving input.

5 RESULTS
In this section we describe the results achieved by preliminary
study that compares different descriptors followed by the outcomes
of the user test.

5.1 Comparison between 3D Sketch Descriptors
We perform a preliminary study using a set of six queries over
the different descriptors and evaluate their retrieval precision with
regards to a set of criteria for the returned model. Following the
approach of Collomosse [Collomosse et al. 2008; James and Collo-
mosse 2014] we evaluate the precision in terms of of this different
facets of the retrieval, therefore for each correctly returned facet of
the model the score is incremented. These correspond to: 1) Struc-
ture – majority of the parts arms back, seat, legs; 2) Style – curvy,
straight, with many lines; 3) Color – dominant color matches query.

This study aims to identify the descriptor that achieves the best
precision for the search task. The most accurate method is then
used in the user test. In addition we prepared two sets of queries,
the first are pure sketch queries, while the second are a combination
of the sketch and the model. We considered the top 10 retrieved
chairs proposed by each method, ranked from position 1 to position
10. Each rule can assign only one point if matched and focuses on
a specific feature of the model. We formalized the rules as follows:

(1) we consider four components of the chair: back, seat, arms
and legs. Where if more than 75% are similar to the target,
the result is considered correct;

(2) if the proposed chair shows a dominant style (curvy, stripes,
convex, etc.) similar to the target chair;

(3) if the proposed chair shows a dominant color similar to the
target chair.

With each result receiving points for the facets a final score in the
range of [0, 3] is calculated, which is then normalized across facets
and queries for a result in [0, 1]. The precision is calculated from
the scores for each result, using the equations:

Pr =

∑r
i=1 Si

r
, (2)

where Pr is the average precision for the rank r , Si is the score for
rank i assigned by our metric. We compare SIFT, ColorSIFT, HOG,
GF-HOG and VGG-M, calculating the average precision for each

chair of the top 10 retrieved models. VGG-M method outperforms
all the other methods using sketch and model queries ( as shown
in fig. 7a) and also using only sketches (as shown in supplemental
material).
We calculate Mean Average Precision (MAP) for each descriptor.
For the sketch and model queries VGG-M’s MAP achieves 0.28,
followed by GF-HOG with 0.18. This pattern is similarly reflected
within the Sketch only queries, with VGG-M’s MAP highest at 0.22,
followed by SIFT with 0.13. Therefore, we perform the user test
using descriptors generated by VGG-M.

5.2 User Study
Our user study consists of 30 participants recruited from the ANON
department and general public. We split the participant into two
equal size groups (15 users per group). The first group of partici-
pants started with scroll method, while the second group started
with the sketch method. Twenty of the participants were male (10
female) while the average age of the participants is 26 years. Each of
the participants in the study performed 6 scroll and 6 sketch tasks,
giving a total of 360 search tasks across all participants. The tasks
splits are demonstrated in fig. 8 with regard to group and session
(see supplementary material for user final queries), i. e. twelve trials
per user, with 15 participants doing the first task with scroll, 15
doing the first task with sketch.

The number of successful task completions for the scroll method
was 119 out of 180 (66%) and for the sketch method 171 out of 180
(95%). In fig. 13 we show the total number of completions for each
method for each task, in the order that participants completed the
tasks in their respective groups. This graph shows the impact of
individual tasks being found easier or harder by the participants.
As there does not appear to be a trend over the sequence of tasks
for the sketch method, it demonstrates minimal learning required
and the intuitive nature of the method.

The task completion performance for the sketch method can be
affected by the complexity of the target model, where difficult mod-
els are challenging to depict. The participant may have improved
their depiction ability or efficiency with the system, but this can
not be conclusively drawn from these results. While the significant
factor for the linear search is the position within the dataset. It also
can be seen a much larger variation in completions per task for
scroll than sketch. For task three, only 3 participants completed the
search with the scroll method. This in comparison with sketch, the
minimum number of completions was 12.

We show the time to complete all tasks in fig. 10 for each of the
methods. We can see that the distributions are very different, with
a cross-over point at around 60 seconds. This can be explained by
the fact that the completion time for the scroll method is largely
determined by the page number that the result appears on; while for
the sketching method there is an additional interaction overhead
for completing the query sketch and the search time.

By comparing the average time to complete all six models for the
sketch or scroll methods in a paired-comparison per user – i. e. each
pair comprised the average time to complete all six sketch tasks
and the average time to complete all six scroll tasks. Additionally
where any failures to complete were clamped to 240s (4 minutes).
The median time to complete the sketch tasks was 99.8s, and the
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(a) (b)

Figure 7: (a) Average precision calculated across ranked results from preliminary study. (b) Comparison of the first and last
query average precision from user study.

Figure 8: Two groups of 15 users are created. The first group
performed the scroll method as the first method for the first
set of chairs, then with the sketch method for the first set of
chairs, then swapped the methods over for the second set of
chairs. The second group did the opposite order of methods
on the same order of sets of chairs.

median time to complete the scroll tasks was 156.5s. Because of
the distribution of times, and the clamping on failure, we used
the exact sign test to compare the differences. This showed that
the difference in medians was significant, with p less than 0.0005.
We asked participants to report a feedback on user experience. In
fig. 11 we show an average rating of sketch and scroll methods for
all users. We can see quite clearly that users strongly prefer the
sketch method, with only two users rating the scroll method as

favorite one, four showing no preference and the remainder (24)
preferring the sketch method.

Qualitative examples are shown in fig. 9a and fig. 9b, showing
the types of sketch created by the participants. We discuss further
the difference between the types of sketch in Section 6.

Finally, we reflect on the development of the precision of results
across the session for users in the case more than one query was per-
formed. Our purpose is to quantify the improvement between the
first and the last query, without considering the cases in which the
user found the target chair after the first interaction, and therefore
considering the refinement of the results over time. We evaluate
using the same mechanism as in the comparison of descriptors
(sec. 5.1) but solely for the selected descriptor VGG-M, in fig. 7b
(b) we can observe for each rank an improvement of the scores
achieved by the last query compared with the first. To quantify
this improvement we calculated the MAP for the first queries that
achieves 0.17, while the MAP for the last queries is 0.24, showing
an improvement during time.

6 DISCUSSION
In this section we discuss the outcomes achieved by the study on
different descriptors and the results obtained by the user study.

6.1 Comparison between 3D Sketch Descriptors
Our preliminary study compares the precision achieved by different
descriptors in order to decide the most accurate method for the
user test. We defined the metric rules in such a way that it avoids
assigning additional points if the target chair is present in the results.
Despite this, VGG-M clearly achieves highest precision scores for
all the top 10 ranks. Consequently, this result shows that VGG-M
descriptor is the most accurate in retrieving different facets (color,
style and shape).

6.2 User study
Our purpose is to explore 3D sketch interaction for object re-
trieval in order to understand its validity and possible develop-
ments. Therefore, we designed an experiment to identify different
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Target Chair Front Left Top-Back 45 Right Top-Right 45Top
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(b)

Figure 9: (a) Examples of users that successfully triggered the system using a combination of sketches and model. The left
column contains the target chairs, while the other columns contain a subset of the snapshots used by the system. (b) Examples
of users that successfully triggered the system using only sketches. The left column contains the target chairs, while the other
columns contain a subset of the snapshots used by the system.

Figure 10: Cumulative time distribution for the scroll and
sketch method. If the target chair was not found within the
time limit (240 seconds) the time is limited to this.

user approaches between our method and a simple linear search.
In addition, we avoided to include complex functionalities during
sketch phase to study the effectiveness of pure sketch interaction.

Our experiment shows that it is possible, through an iterative
process of sketching and model selection, to perform an effective
search for a model in a large database while immersed in a virtual
environment. Further the accuracy and the completion time are
significantly improve on naive scroll method and the participants
also prefer the sketch based approach.

While the scroll method represents a baseline with a clear and
linear work-flow to the user, the sketch method allows different
strategies. In general two different techniques emerged from the

experiment: sketch only as shown by examples in fig. 9b and sketch
with a model as shown in fig. 9a. The first and more intuitive ap-
proach is to make a single sketch and detail it step by step until most
features of the chairs are resolved without replacing the model. The
user can interrogate the system to have a feedback but essentially
will continue to sketch. The downside is that the user can waste
time on detailing a sketch and, in addition, can depict features that
are not relevant. Determining whether features are relevant or not
is not a trivial task for two reasons. The first one is that different
users will over-rate the saliency of the feature (e. g. it may be an
uncommon feature but it has not been captured by the descriptor).
The second one is the possibility that the specific feature is com-
mon to many objects of the database. Both cases can lead to an
unsatisfactory answer from the system as it proposes a chair set
without that feature or conversely many chairs containing it.

The second approach is to only model differences to the current
object: that is the user queries the system and then only adds fea-
tures that are different in the target object. The sketch is usually
started again after each query. The advantage of this method is
that the quick response from the system (~2 seconds) enables fast
iterative refinement. Every time the system receives a different com-
bination of sketch and model it will retrieve a different set of chairs.
This method requires more experience from the user, but after few
iterations we observed several participants starting to adopt it. In
addition we demonstrate, through the comparison between first
and last query outcomes, that user improves the precision as the
search progresses with time, increasing the similarity of the facet
of the retrieved models with the facet of the target.
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Figure 11: Each participants ratings for both the scroll
and sketch method on a scale of one to five.

Figure 12: Word Cloud of the 150 most fequent words
in tags and descriptions (with stopwords removed) gen-
erated over the ShapeNet Chair subset.

Figure 13: The number of successful searchesmade for scroll
and sketch for each user.

7 LIMITATIONS AND FUTUREWORK
Despite the benefits of the using sketch and the positive feedback
from the user study, several aspects could be investigated to improve
the search accuracy or experience. These are outlined below:

Multiple Object Categories. In addition to working with chairs
we performed an additional experiment with the table collection
within the ShapeNet database. We verified the same behavior of
the system using the proposed approach. As the approach has no
fine-tune training for the chair object category it is plausible that
results can further be extrapolated over the larger collection, with
an initial object category selection at initialization.

Gestures, Brushes and UI. We opt to avoid additional interaction
learning that can occur from gestures or brushes. But, these are
useful tools allowing a user to shortcut through tasks. It is easy
to imagine using gesture recognition for object type identification
(table etc.) avoiding NLP or text selection. Alternatively familiar
tools from photo editing e. g. brushes to aid in depicting large region
color or fill-bucket tool to specify a regions texture (an element not
easily depicted).

Baseline method selection. We used a linear search as the baseline
as it avoids taking the user out of the immersive reality and requires
minimal training that could introduce bias. An alternative method
of searching collections is based on text filtering or faceted search.

Although an attractive approach, model collections are rarely anno-
tated with adjectives to convey the visual appearance of the object.
This is indeed the case with ShapeNet, even with the considerable
amount of human annotation in terms of both keyword tags and
brief descriptions these fail to describe the diversity of the model.
This can be seen through fig. 12 where we analyze both tags and
words in the description showing the top 150 keywords as a tag
cloud scaled dependent on their frequency. It can be seen words de-
scribe their specific object names or location that would be difficult
or unlikely to be conveyed by the user (Meta-data for target models
is provided in the supplementary material). It would be expected
that a keyword search may only marginally improve search time.

8 CONCLUSION
The benefits of the virtual reality in the field of scene modeling have
been investigated for several years. Previous research has focused
on free-form modeling rather than developing a way to retrieve
models from a large database. Current strategies for navigating an
existing dataset use queries on tags or simply show to the user the
entire set of models. In addition, large collections can suffer from a
lack of meta-information which hampers model search and thus
excludes part of the dataset from query results. We proposed a novel
interaction paradigm that helps users to select a target item using
an iterative sketch-based mechanism. We improve this interaction
with the possibility of combining sketches and a background model
together to form a query to search for a target model. We run a
study to determine the most accurate descriptor. An experiment
collected information about the time taken to complete the task
and user experience rating. We compared our method with a naive
scrolling selection method. The sketch-based method was clearly
preferred by users and led to a significant reduction in search time.
We thus believe that sketch-based queries are a very promising
complement to existing immersive sketching systems.
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