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exploration of indoor environments
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Abstract—We propose a novel information gain metric that
combines hand-crafted and data-driven metrics to address the
next best view problem for autonomous 3D mapping of unknown
indoor environments. For the hand-crafted metric, we propose
an entropy-based information gain that accounts for the previous
view points to avoid the camera to revisit the same location and
to promote the motion toward unexplored or occluded areas.
Whereas for the learnt metric, we adopt a Convolutional Neural
Network (CNN) architecture and formulate the problem as a
classification problem. The CNN takes as input the current
depth image and outputs the motion direction that suggests the
largest unexplored surface. We train and test the CNN using a
new synthetic dataset based on the SUNCG dataset. The learnt
motion direction is then combined with the proposed hand-
crafted metric to help handle situations where using only the
hand-crafted metric tends to face ambiguities. We finally evaluate
the autonomous paths over several real and synthetic indoor
scenes including complex industrial and domestic settings and
prove that our combined metric is able to further improve the
exploration coverage compared to using only the proposed hand-
crafted metric.

Index Terms—Computer Vision for Automation; Range Sens-
ing; Deep Learning in Robotics and Automation

I. INTRODUCTION

AUTONOMOUS systems need to perceive their surround-
ing 3D world in order to navigate and operate safely.

Even if 3D reconstruction is a mature technology, less attention
has been posed to the problem of efficiently mapping and
covering the 3D structure of an unknown space. This task has
strong relations to the longstanding Next Best View (NBV)
problem [3], [14], [22], [19] but with the additional issue of
not having any prior knowledge of the environment where
the autonomous system is moving. In particular, in this work
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4C. Beltrán-González is with Pattern Analysis and Computer Vision
(PAVIS) Department, Istituto Italiano di Tecnologia (IIT), Genova, Italy

5Y. Konishi is with OMRON research, Kyoto, Japan.
Digital Object Identifier (DOI): see top of this page.

the autonomous agent is embodied by a robotic arm equipped
with a RGBD camera providing both depth and pose. The
proposed approach is general and can be extended to other
mobile systems [25], [12] and aerial 3D mapping [18].

Regardless various tasks, such as active object recogni-
tion [17], [13], [10] and 3D reconstruction [16], [15], [24],
[12], [4], the main methodology of NBV is similar: modelling
the information gain and selecting the next view with the most
informative measurement where additional constraints, such as
the motion-related cost and safety, can be applied [16], [25],
[24], [12], [4]. Our system follows such paradigm: at each time
step the system selects a new pose among a set of candidates
that satisfies certain constraints regarding: i) navigation, i.e.
the new pose should be reachable from the current pose,
and ii) feasible 3D reconstruction, i.e. the new pose should
guarantee a minimal Field of View (FoV) overlapping with
current pose. The pose with the highest metric that quantifies
the information gain will be the next pose.

Modelling the information gain plays a key role in the NBV
problem. In this work we propose a novel hand-crafted metric
together with a data-driven metric to address the severely ill-
posed NBV problem for 3D mapping of an unknown envi-
ronment. For the hand-crafted information metric, we propose
an entropy-based volumetric utility that accounts for historical
view points to avoid the camera revisiting the same pose, while
attracting the camera to visit voxels with a lower confidence
that can be caused by occlusion. We achieve this via a view-
dependent visibility descriptor that records the accumulated
information gain distributed by viewing directions. Different
from inferring the occlusion from spatial hints as in other
works [15], [4]; we try to infer the occlusion via the temporal-
spatial hint provided by the proposed descriptor. For the
data-driven metric, we introduce an approach that avoids to
formulate the task as a regression problem or training a 3D
CNN, which commonly require large numbers of parameters to
optimize along with extensive training data. Instead, we learn
the information utility function in a classification setting which
needs less training data and computation. We propose to use a
more efficient CNN architecture, that takes as input the current
depth image and outputs the ranked motion directions as a
indication for where to explore. We further propose various
strategies to combine the learnt metric with the proposed hand-
crafted metric in order to drive the robot out of ambiguous
situations when using only the hand-crafted metric. This likely
happens in the beginning of the exploration when moving any
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Fig. 1: At each step the pose and depth are provided to the motion planner. The Depth CNN provides a data-driven metric for
suggesting the direction while the volumetric gain is a hand-crafted metric. The two metrics are combined to produce the next
movement. This process is iterated taking the best of both metrics to maximize surface coverage in as few steps as possible.

directions can be equally good in terms of volumetric gain.
To summarize, our contributions are: 1) A novel entropy

based view dependent information gain function, 2) A simple
and efficient data-driven CNN that learns the information gain
function over depth images, 3) a combined hand-crafted and
data-driven technique over time and 4) a synthetic and real
dataset with ground truth for NBV problems.

The rest of the paper is organized as follow. Section II
discusses the related works on selecting the NBV for 3D
exploration and mapping. Section III describes our hand-
crafted information gain utility, Section IV describes the
CNN structure for learning the motion hints, and Section V
details how we combine both utilities. Section VI provides the
experimental evaluation and finally Section VII concludes the
paper providing perspectives for future work.

II. RELATED WORK

In this section, we will cover related works on NBV for
3D exploration and mapping with particular focus on the
modelling of information gain.

NBV without 3D knowledge is an ill-posed problem and
how to model the information gain plays an essential role
in addressing this task. The modelling of information gain
greatly depends on how the 3D environment is represented,
which can be categorized as surface-based [2] and volume-
based representation [20]. The volumetric representation is
often employed for online motion planing for its compactness
and efficiency in visibility operations [4]. The status of each
voxel can be either occupied, free or unknown. The candidate
camera poses for the next move should be in the free voxels
and satisfy any kinematic or navigation constraints.

Multiple volumetric information metrics have been pro-
posed for selecting the NBV, often using ray tracing. A com-
mon idea is to provide statistics on the number of unknown
voxels [16], [25], [24], where one can either count all the
unknown voxels encountered [16], or count only the frontier
voxels, which are the voxels on the boundary between the
known free space and the unexplored space [25]. Occlusion
is further taken into account by counting the occuplane (a

contraction for occlusion plane) voxels that are defined as
voxels bordering free and occluded space [24].

In addition to counting-based metrics, there are also metrics
based on probabilistic occupancy estimation that accounts for
the measurement uncertainty [6], [12],[11]. The main method
for computing probabilistic information metrics is based on
information entropy [15], [7], [12], [4]. As a ray traverse the
map, the information gain of each ray is the accumulated
gain of all visible voxels in the form of either a sum [4] or
an average [7]. The sum favours views with rays traversing
deeper into the map, while the average favours more on the
uncertainty of voxels regardless the ray depth. Moreover, inac-
curate prediction of the new measurement probability during
ray tracing can be an issue for computing the information
gain if occlusion is not considered. To address this issue,
Potthast and Sukhatme [15] utilize a Hidden Markov Model to
estimate the likelihood of an unknown voxel being visible at
any viewpoints. The work in [4] accounts for the probability
of a voxel being occluded via weighting the information gain
by the product of the emptiness probability of all voxels
before reaching that voxel. Although the computation can be
different, the heuristic behind both [15], [4] is similar, i.e. a
voxel with a large unobserved volume between its position
and the candidate view position is more likely to be occluded
and therefore contributes less information gain.

In addition to the hand-crafted information gain metrics,
there is also a recent effort to train a 3D CNN that aims to learn
the information utility function [5]. 3D CNN is trained with
the known 3D models of the scene, and the utility is defined
as the decrease in uncertainty of surface voxels with a new
measurement. The goal is that, at run time, the network works
as an oracle that can predict the information gain for any input
pose given the current occupancy map. Hepp et al. [5] trained
and tested the learnt metric with both outdoor synthetic dataset
and indoor dataset, showing better mapping performance and
faster processing compared to the hand-crafted information
gain metrics. While [5] trains a 3D CNN and requires as input
the 3D reconstruction status, we instead propose a 2D CNN to
learn the information gain function from a single-shot depth
image and combine the learnt metric with the hand-crafted
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(a) (b)

Fig. 2: Illustration of visibility modelling. (a) A sensor with
the frustum-shaped FoV located at ti views the kth voxel at
position tk in the world coordinate W = (Xw, Y w, Zw). (b)
The horizontal view angle ϕk and vertical view angle θk for
the kth voxel with respect to the sensor position.

metric which encodes the reconstruction status.

III. HAND-CRAFTED VOLUMETRIC METRIC

Our hand-crafted utility is designed based on octomap [6], a
probabilistic 3D volumetric representation. The possible space
is quantized into voxels that are associated with an occupancy
probability pk ∈ [0, 1], at each time step pk is updated with
the new range measurement coming from the depth image
(D). Based on the occupancy probability, each voxel is thus
expressed as having one of three states: Unknown, Free and
Occupied. A higher pk value indicates that the voxel is more
likely to be occupied, while the lower indicates a higher
likelihood to be empty.

Our reconstruction and mapping framework requires as
input a RGBD frame (e.g. as given by a Kinect sensor)
and a calibrated sensor pose that can be given either by a
Simultaneous Localization and Mapping (SLAM) method or
from a robotic arm position encoders. We prefer the latter in
this work since it provides a high accuracy positions for testing
the motion policy.

For each candidate pose pi = [ti,Ri] with ti for position
and Ri for rotation, we compute a information gain utility
by tracing rays from the candidate pose to the space in a
discretized manner within the FoV. The utility of candidate
pose aggregates the utility of all rays as an average, where the
utility of each ray is computed as the averaged utility of all
visible voxels along the ray.

A. View-dependent descriptor

Each voxel in the space is associated with two descriptors,
Ok and Ck, that record the status of voxels over the viewing
directions. The value Ok stores the probability of the voxel
being occupied and Ck stores the accumulated confidence of
the voxel’s status being either occupied or empty.

The descriptors will only be updated when the voxel is
visible to the sensor at a given pose. A voxel is considered
visible if it lies within the sensor’s FoV (modelled as a
frustum) by checking its distance and angle difference [23]

(see Fig. 2(a)). We discretize the horizontal and vertical angles
to index the view direction [23]. If kth voxel is visible from
the sensor at a position with ϕk and θk (see Fig. 2(b)), the two-
dimensional index ik =

[
ihk , i

v
k

]
is computed as ihk = bϕk

δ c
and ivk = b θkδ c, where δ is the angle step that is set to π

18 and
b·c gives the floor value. We can update our descriptors at a
certain sensor pose indexed by ik as:

Ok[ik] = pk (1)
Ck[ik] = Ck[ik] + c(pk), (2)

where the function c(pk) = 1+pk log(pk)+(1−pk) log(1−pk)
computes the confidence based on information entropy.

B. View-aware utility

We compute the information gain utility of each candidate
pose based on the view-dependent descriptors. We aim to
assign the highest utility to voxels that have never been visited
at any poses, and to decrease the utility as the accumulated
confidence of the voxel increases.

For the visible kth voxel that has not been seen before, the
utility uk[ik] corresponding to the sensor pose indexed by ik
is set to be 1. For the visible kth voxel that has been seen
before, we define the utility uk[ik] as:

uk[ik] =


(
∑

Ck
)−1, Ck[ik] = 0

c(Ok[ik])∑
Ck

, otherwise
(3)

where
∑

Ck
is the sum of the accumulated confidences at all

view directions. The utility uk[ik] is set to 1 if voxel vk is
not viewed at the current pose and discounted by the sum of
confidences.

The final information gain utility given a certain sensor
pose, ug(pi), is computed by tracing rays in the 3D space
that discretize the FoV as shown in Fig. 2 (a). The angle
step between consecutive rays is set to π

400 for both horizontal
and vertical directions. Each ray is associated with a visibility
utility that is the average of the utilities of voxels that are
within the visibility range. The visibility range starts at the
minimum sensor range and ends at the first occupied voxel
or the maximum range. In the case when a ray traverses an
unexplored area, the maximum utility, i.e. 1, is associated to
the ray. The final utility ug(pi) is the average of the utilities
associated to all rays.

IV. LEARNING MOTION DIRECTIONS

Our data-driven metric is inspired by prior works on ob-
jectness [1], [9] that identify possible meaningful structure
in an image. In contrast, we utilize depth images to learn
a function uh to maximize the information gain and in turn
predict a direction label for the next move. Although this does
not maintain a history of the space being reconstructed, it
is efficient to compute at test time and avoids duplicating
the memory over ahead already stored within the octomap.
We therefore pose this problem as a classification task on
the direction labels using the architecture of AlexNet [8]
over depth images. This strategy makes the problem tractable
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than regressing the movements, it also removes the need for
modelling kinematics within the possible solution space, as
invalid direction can simply be removed afterwards.

A. CNN structure

The model consists of five convolutional layers with three
max pool and nonlinear layers, as per the original AlexNet
model. We adjust the two fully connected and classification
layers to output the six directional classes with soft max. To
learn uh, we define a function f as the AlexNet model learnt
from a constructed synthetic training set on SUNCG [21].
The SUNCG dataset consists of over 45K synthetic indoor
scenes and each scene has rooms and furniture layouts that are
manually created in a realistic manner, which was validated
by mechanical turk. All the scenes are semantically annotated
at the object level.

During training, we create a set of views and render their
corresponding depth images. In addition we render the six
adjacent views corresponding to the directional labels (see
Fig. 3), creating a set of candidate poses pj ∈ Ωi. As SUNCG
provides the 3D models of objects, we can compute the
volumetric information gain as the number of visible surface
voxels from each view. The label y, therefore corresponds
to yi = arg max(G(pi)), where G is the information gain
function.

We opt not to use an initialized model, for example from
ImageNet, to avoid semantic class bias and only use the
synthetic object surfaces captured by depth during training.
We therefore minimize the cross-entropy loss over the training
set D = 1...N where N is the number of training samples
formulated as:

L(w) =

N∑
i=0

6∑
c=0

−yiclogfc(Di). (4)

At test time given D, we compute the direction label as
y(D) = arg max(f(D)).

It is worth noting that this model will contain no temporal
information, but only an indication to the direction to max-
imize the information gain. Although including a temporal
model, e.g. LSTM or Markov Model, would allow this infor-
mation to be propagated over, our goal is only to provide an
indication to the path planning and avoid any domain specific
training of a motion category.

Implementation Details: We follow the standard hyper
parameter settings for learning on an AlexNet model; learning
rate 1e−2, 10 epochs, momentum 0.9 and weight decay 5e−4.
Note that given the more limited training data, convergence
occurs earlier than when training on ImageNet data. We also
have reduced number of weights with only one input channel.

B. Dataset Generation for training/validation

In order to train the 2D CNN, we created a dataset based
on the SUNCG [21]. To train our model, we first created 7920
camera poses and their corresponding RGB and depth images
which contain a minimum of three objects in each view. We
constrain the generation based on normalized best motion
direction, this removes the influence of a singular motion (most

commonly backwards due to the label function) being selected
and resulting in training bias.

We compute the corresponding candidate movement poses
from each of the generated sensor poses by translating the
camera to six directions by a distance dδ . We set the translation
distance dδ to 0.1 m in order to maintain 80% overlap between
the current and next depth images1. As only translation is of
concern, we only need to compute the position vector of the
candidate poses: 

tui = ti + dδeui
tdi = ti − dδeui
tfi = ti + dδefi
tbi = ti − dδefi
tri = ti + dδefi × eui
tli = ti − dδefi × eui

(5)

where the symbol × represents the cross product operation
and efi × eui gives the unit vector for moving right.

The final step is the generation of the motion label(y) for
each camera pose. We exploit the ground-truth knowledge of
the scene volume and select the next camera pose with the
most occupied volume. We quantify the volumetric gain as the
difference of the number of visible occupied voxels between
the current camera pose and the next pose. One example for
demonstrating the dataset generation is shown in Figure 3.
Given a camera pose in a scene, we show the resulted depth
(the first row) and RGB (the second row) images by moving
the current camera pose to the six directions. By checking the
resulted volumetric gain, the motion label is set to ‘Backward’.

CNN evaluation: We evaluate on the SUNCG synthetic
dataset by performing an 80-20 split between training and
validation, therefore measuring the performance of the data-
driven given the perfect case and non-continuous. For fair
comparison, we perform 3-fold cross-validation and average
the training and validation accuracy. We achieve an average
accuracy for the training of 82.4% and a validation accuracy
of 64.3%.

V. COMBINING METRICS

Let pj ∈ Ωi be the set of reachable candidate poses of
current pose pi. For selecting the NBV, we compute a final
utility, u(pj ,Di) for each candidate pose that combines both
the utility ug(pj) based on the hand-crafted gain metric and
the utility uh(Di) computed based on data-driven direction
indications.

The utility uh(pj ,Di) includes the suggested direction label
that is generated by CNN. To quantify the utility in range
[0, 1], we compute the projection between the unit vector of
the suggested direction and the unit vector from the current
pose pi to the candidate pose pj . The pose with the most
similar direction to the suggested one has the highest utility.

Let e∗i = Rie∗ be the unit vector of the CNN-suggested di-
rection at the current pose, where the superscript ∗ corresponds
to one of the six directions. Define ∆ej,i =

tj−ti
|tj−ti|2

as the
unit difference vector of the position of candidate pose tj and

1The overlap of consecutive depth camera FoV is necessary to obtain 3D
reconstruction with our method described in Sec VI-A
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Fig. 3: Example of a depth camera in a SUNCG scene. (a) The scene and the camera pose. (b) The resulting depth (the first
row) and RGB (the second row) images given by moving the camera pose to the six directions. The motion label is selected
as ‘Backward’ as this motion results in the highest volumetric gain (best viewed in color).

the position of current pose ti. The smaller angle difference
between ∆ej,i and e∗i should indicate a higher utility, we
therefore design the utility function based on the dot product
as

uh(pj ,Dj) =
∆ej,ie∗i + 1

2
. (6)

When ∆ej,i coincides with e∗i , uh(Dj) is valued 1, whereas
when ∆ej,i is at the opposite direction of e∗i , uh(Dj) is valued
0.

We attempted to combine the utilities in four different
manners. The guiding design principle in this combination was
that the CNN should influence the NBV only in cases where
using the information utility alone might be ambiguous. We
avoid being dependent on the learnt motion indications while
not necessary as the learning process does not encode temporal
information.

Naive Switching: The combined utility u(pj ,Di) follows
a switching policy which is rather naive. We anticipate that the
gain utility may encounter difficulties at the initial exploration
stage because a similar gain may be resulted from moving in
any direction. In such cases, the system selects the first poses
purely based on the learnt utility uh(pj ,Di) while afterwards
switching to the gain utility ug(pj) as:{

u(pj ,Di) = uh(Di), t ≤ τ
u(pj ,Di) = ug(pj), t > τ.

(7)

Weighted Average: Following the similar motivation that
the gain utility may encounter difficulties at the initial stage,
we combined utility as the weighted average of ug(pj) and
uh(pj ,Di) with the weight decaying with time t:

u(pj ,Di) = (1− α(t))ug(pj) + α(t)uh(pj ,Di), (8)

where α(t) is the weight with a decaying function that is the
inverse of t.

Temporal Conditioning: With temporal conditioning, we
switch between the gain utility and learnt utility autonomously
by detecting the ambiguous cases. We determine whether to
switch by checking the tendency of the gain utility and the
difference between the next pose suggested by the two utilities
individually within a small time window. In the cases when
1) gain utility continuously decreases and in the mean time
2) the learnt utility continuously suggests a different direction

Fig. 4: Five real indoor rooms for the experiments. (a) main-
tenance room (mroom), (b) laboratory (lab), (c) corridor, (d)
office and (e) storage room (storage).

compared to the gain utility (c2), we switch to using learnt
utility otherwise the gain utility will be used. The temporal
window is set to 3 time steps. We set the boolean variable c1
to 1 when condition 1) is satisfied otherwise to 0. The same
rule applies to boolean variable c2.

The switching based on temporal conditioning is given by:{
u(pj ,Di) = uh(pj ,Di), c1 = 1 & c2 = 1
u(pj ,Di) = ug(pj), otherwise.

(9)

Weighted Average & Temporal Conditioning: We further
combine the Weighted Average and Temporal Conditioning in
the following manner: At initial steps, the NBV is selected
based on the combined utility computed using Weighted Av-
erage strategy, and after the combined utility will be computed
with the Temporal Conditioning strategy.

VI. EXPERIMENTS

We perform two types of experiments based on synthetic
data (Fig. 4) and real world data captured in four complex
environments (Fig. 5). We outline the creation of the dataset
and then perform studies on the exploration performance using
different strategies based on the coverage of the space.

A. Dataset creation

We create a real world dataset containing representative data
of three indoor environments: industrial, laboratory and office.
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Fig. 5: Four synthetic indoor rooms for the experiments. (a)
room1 (b) room2 (c) room3 and (d) room4.

Within these general environment categories, we collected data
in five concrete scenarios: (i) a maintenance room (mroom),
(ii) an electronics laboratory (lab), (iii) an office (office), (iv) a
corridor with control panels (corridor) and (v) a small storage
room (storage) (see Fig. 4).

We adopted the same pipeline for data acquisition through-
out all scenarios. The RGBD data with poses, provided by
the robotic arm were collected using a Kinect v1 mounted
on the end-effector of a UR5 robotic arm. By following a
dense dome-shaped path the captured data of the whole indoor
environment was reconstructed using Intel Open3D [26] li-
braries to generate a 3D point cloud. Laser scanning data were
also acquired as ground truth (GT) information to evaluate
the reconstruction accuracy while mapping the scene. A Leica
C10 laser scanner was placed in multiple positions along the
scenes in order to acquire dense 3D point clouds from multiple
viewpoints. From the laser scan data the GT was generated
by aligning and clean 3D mesh through merging the point
clouds of multiple acquisitions. When compared against GT
point clouds, the 3D reconstruction error, i.e. the mean cloud
to cloud absolute distance, of the fixed dome-shape path lies
within the range of [4, 7] cm.

The four synthetic indoor housing environments are ren-
dered using the SUNCG dataset (see Fig. 5). Depth and RGB
images are rendered following the same dome-shaped path
as in the real room dataset. The initial height of the camera
is chosen at 1.25 m which is similar to the real configuration
of our table-mounted robotic arm. Regarding GT point clouds,
the SUNCG dataset has CAD models available for each indoor
environment, thus the evaluation of reconstruction accuracy
can be performed.

B. Evaluation and analysis

We evaluate our four attempted Combined Gain (CGain)
metrics against Random, i.e. randomly selecting a next
pose among candidate neighbouring poses, a probability-
based information gain using the standard octomap structure
[11] (BaseGain-P), our entropy-based information gain using
the standard octomap structure without view-dependent de-
scriptors (BaseGain-E), Information Gain Metric (InfoGain),
Learnt Metric (CNN) and InfoGain combined with Random
using Weighted Average (CGain-Rand) on both the synthetic

and real scenes. Our four Combined Gain metrics presented
in Sec. V are (i) Weighted Average (CGain-WA), (2) Naive
Switching (CGain-NS) with τ = 10, (3) Temporal Con-
ditioning (CGain-TC) and Weighted Average & Temporal
Conditioning (CGain-WATC).

The exploration performance is quantified as the coverage
ratio of the number of the surface voxels generated using
autonomous methods against the number of surface voxels
produced using the predefined dense dome-shaped path, i.e. an
exhaustive sampling of the camera pose space. We consider
that the dome-shaped path explores the complete room, i.e.
the coverage ratio is 100% with 672 poses and implicitly
contains the constraints regarding the NBV reachability and
FoV overlapping for 3D reconstructions.

As Random, the Learnt Metric and some Combined Gains
have no suitable stopping criteria due to no memory of current
status of exploration, we evaluate for all methods until a fixed
number of steps (i.e. 130). The number is set according to
InfoGain metric which in all cases was invoked earlier when
the camera starts looping within a small area (i.e. ending up
in a local minima). The metric that achieves a larger coverage
ratio within the fixed number of steps is considered more
efficient.

We present in Table I the results of all metrics and
Fig. 7(a) shows the exploration coverage ratio over time. The
results of real rooms and synthetic rooms are averaged over
5 independent runs. The coverage ratio given by InfoGain
outperforms Random and the two BaseGain on average. The
view-dependent descriptors weight the metric based on the
view history thus being able to drive the robot with constant
coverage improvement, while the two BaseGain methods
saturate due to being stuck at a local area (see Fig. 7(a)).
With InfoGain only, the coverage ratio can already reach a
satisfactory performance of 85% on average and with the
largest coverage ratio of 99% and the lowest of 52%. InfoGain
tends to end up in local minima when the camera revisits
the already explored area. In general, with InfoGain only, the
average coverage ratio achieved in synthetic rooms is 86%,
which is higher than the coverage ratio in real rooms is 84%.
A similar trend is observed when using other InfoGain-based
metrics which shows that the effectiveness of the InfoGain
can be affected when the scene is more complex. The strategy
CNN only relies on the motion hints which often results in a
much smaller coverage ratio as the CNN does not encode any
temporal memory, thus tends to being stuck in a local area as
shown in Fig. 7(a).

In general, we do observe coverage improvements in most
rooms when applying the Combined Gain with CGain-WA
and CGain-NS. This proves our hypothesis that the learnt
utility can help in the initial steps when the hand-crafted
gain can be similar moving at any directions as the scene
is mostly unexplored. The CGain-TC metric shows some
potential in outperforming InfoGain with a small margin while
the improvement is less dominant compared to CGain-WA and
CGain-NS. While we noticed that CGain-Rand can achieve the
best coverage in two rooms among all metrics, the inclusion
of the learnt utility do tend to provide a higher coverage
improvement for the remaining rooms (six over nine).
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TABLE I: Exploration 3D coverage ratio (with standard deviation) achieved with a fixed number of steps (i.e. 130) using
various information metrics under different synthetic and real indoor scenes (higher is better).

Random BaseGain-P BaseGain-E InfoGain CNN CGain-Rand CGain-TC CGain-WATC CGain-NS CGain-WA
room1 0.49 (0.20) 0.22 (0.15) 0.52 (0.10) 0.89 (0.20) 0.26 (0.10) 0.91 (0.02) 0.89 (0.20) 0.94 (0.04) 0.93 (0.04) 0.99 (0.03)
room2 0.53 (0.15) 0.28 (0.04) 0.45 (0.11) 0.83 (0.10) 0.15 (0.04) 0.83 (0.03) 0.83 (0.10) 0.86 (0.04) 0.84 (0.08) 0.87 (0.07)
room3 0.52 (0.10) 0.24 (0.09) 0.48 (0.01) 0.89 (0.05) 0.19 (0.07) 0.80 (0.02) 0.86 (0.05) 0.87 (0.04) 0.90 (0.03) 0.83 (0.04)
room4 0.58 (0.18) 0.23 (0.13) 0.53 (0.04) 0.84 (0.13) 0.24 (0.08) 0.81 (0.02) 0.85 (0.13) 0.90 (0.11) 0.82 (0.26) 0.90 (0.10)
mroom 0.39 (0.11) 0.32 (0.08) 0.42 (0.06) 0.78 (0.04) 0.29 (0.10) 0.80 (0.02) 0.78 (0.06) 0.82 (0.05) 0.79 (0.02) 0.84 (0.03)

lab 0.35 (0.16) 0.49 (0.07) 0.45 (0.11) 0.86 (0.04) 0.25 (0.10) 0.85 (0.02) 0.89 (0.05) 0.79 (0.06) 0.83 (0.06) 0.84 (0.05)
office 0.49 (0.11) 0.20 (0.09) 0.20 (0.11) 0.87 (0.03) 0.31 (0.09) 0.89 (0.02) 0.89 (0.04) 0.85 (0.09) 0.89 (0.04) 0.89 (0.04)

corridor 0.44 (0.21) 0.10 (0.03) 0.16 (0.11) 0.83 (0.06) 0.43 (0.06) 0.86 (0.04) 0.81 (0.04) 0.83 (0.03) 0.84 (0.03) 0.72 (0.24)
storage 0.43 (0.18) 0.29 (0.15) 0.44 (0.04) 0.87 (0.20) 0.40 (0.07) 0.99 (0.01) 0.85 (0.18) 0.97 (0.03) 0.81 (0.10) 0.84 (0.22)

Random InfoGain CNN CGain-WA

Fig. 6: The selected poses and their corresponding 3D reconstruction in maintenance room. Row 1: the selected poses on the
dome surface; Row 2: 3D reconstruction result in colored point cloud (best viewed in color).

When using GGain-WA and GGain-WATC, the coverage
ratio can be improved by up to 10% compared to using
InfoGain only. Note that when the scene is small with simple
structure, e.g. the synthetic room1 and the real storage room,
the coverage ratio can reach 100% when using the combined
gain CGain-WA and GGain-WATC (see the supplementary
video for the demo with a UR5 robotic arm). For more com-
plex rooms, although we observe the coverage improvement
is lower, the combined CGain-WA can still achieve up to 6%
coverage improvement in the maintenance room which has
challenging structures and reflective surfaces.

The reconstruction error of the autonomous paths on average
lies within the range of [4, 7] cm which is similar to the
error achieved when following the fixed dense dome-shape
path. In terms of computation time analysis, we performed
experiments using a Dell Alienware Aurora with core i7, the
processing time break-down for 3D reconstruction including
volume integration and point cloud extraction, octomap update
and NBV selection is shown in Fig. 7(b). The processing time
of all modules increases as the scene gets completed with the
voxel size of 2.5 cm. The NBV module takes around 0.8 s for
computing the hand-crafted and learnt utilities and selecting
the next pose using standard parallelization techniques. The
processing time for CNN-learnt metric is 0.005 s, which is
negligible.

As an example, we show in Fig. 6 the resulted paths

on a dome-surface in the maintenance room together with
their corresponding 3D reconstruction results in colored point
clouds. The path generated with Random metric fails to scan
the complete space, where the InfoGain metric is able to drive
the robotic arm to visit most of the space, although it gets stuck
easily in local minima. Instead, the combined gain CGain-
WA is able to continuously drive the arm to visit more space
resulting in a better coverage.

We have implemented an online system on ROS that takes
RGBD stream and performs the NBV selection among candi-
date poses in real time. Existing MoveIt2 libraries are exploited
to update octomap and ensure path feasibility by checking
collisions with the robot itself and its surroundings. At run
time, the 3D reconstruction and octomap update can take up
to 2 s depending on the reconstruction density, while the NBV
module maintains around 0.8 s.

VII. CONCLUSION

In this paper we have proposed a solution that takes ad-
vantage of hand-crafted and data-driven metric to address the
NBV problem within unconstrained environments. We have
shown by experiments with synthetic and real dataset that
the data-driven metric is more advantageous in the beginning
of exploration while later the hand-crafted metric is able to

2https://moveit.ros.org/
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(a)

(b)

Fig. 7: Coverage ratio (a) and processing time break-down (b)
over time averaged over all rooms (best viewed in color).

complete the scene more effectively. With the proposed hand-
crafted metric only, the system achieves on average 85% cov-
erage. The combined metric can further improve the coverage
achieved with the hand-crafted metric up to 10% with the
improvement margin depending on the complexity of rooms.
The data-driven metric is not aware of the reconstruction
status, i.e. the metric cannot guarantee to help the system out
of ambiguous situations or local minima. As future work, we
will further improve the learnt metric by encoding the status
of local reconstruction into the network.
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